These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 27817922)
1. Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal. Mandal A; Singh N; Purakayastha TJ Sci Total Environ; 2017 Jan; 577():376-385. PubMed ID: 27817922 [TBL] [Abstract][Full Text] [Related]
2. Agro-waste biosorbents: Effect of physico-chemical properties on atrazine and imidacloprid sorption. Mandal A; Singh N; Nain L J Environ Sci Health B; 2017 Sep; 52(9):671-682. PubMed ID: 28679066 [TBL] [Abstract][Full Text] [Related]
3. Optimization of atrazine and imidacloprid removal from water using biochars: Designing single or multi-staged batch adsorption systems. Mandal A; Singh N Int J Hyg Environ Health; 2017 May; 220(3):637-645. PubMed ID: 28433639 [TBL] [Abstract][Full Text] [Related]
4. Kinetic and isotherm error optimization studies for adsorption of atrazine and imidacloprid on bark of Eucalyptus tereticornis L. Mandal A; Singh N J Environ Sci Health B; 2016; 51(3):192-203. PubMed ID: 26674296 [TBL] [Abstract][Full Text] [Related]
5. Sorption properties of greenwaste biochar for two triazine pesticides. Zheng W; Guo M; Chow T; Bennett DN; Rajagopalan N J Hazard Mater; 2010 Sep; 181(1-3):121-6. PubMed ID: 20510513 [TBL] [Abstract][Full Text] [Related]
6. Sorption mechanisms of pesticides removal from effluent matrix using biochar: Conclusions from molecular modelling studies validated by single-, binary and ternary solute experiments. Mandal A; Kumar A; Singh N J Environ Manage; 2021 Oct; 295():113104. PubMed ID: 34174681 [TBL] [Abstract][Full Text] [Related]
7. Kinetics and isotherm modeling of azoxystrobin and imidacloprid retention in biomixtures. Kumari A; Mandal A; Singh N J Environ Sci Health B; 2019; 54(2):118-128. PubMed ID: 30285549 [TBL] [Abstract][Full Text] [Related]
8. Properties comparison of biochars from corn straw with different pretreatment and sorption behaviour of atrazine. Zhao X; Ouyang W; Hao F; Lin C; Wang F; Han S; Geng X Bioresour Technol; 2013 Nov; 147():338-344. PubMed ID: 23999263 [TBL] [Abstract][Full Text] [Related]
9. Insights into aqueous carbofuran removal by modified and non-modified rice husk biochars. Mayakaduwa SS; Herath I; Ok YS; Mohan D; Vithanage M Environ Sci Pollut Res Int; 2017 Oct; 24(29):22755-22763. PubMed ID: 27553000 [TBL] [Abstract][Full Text] [Related]
10. Properties of biochar-amended soils and their sorption of imidacloprid, isoproturon, and atrazine. Jin J; Kang M; Sun K; Pan Z; Wu F; Xing B Sci Total Environ; 2016 Apr; 550():504-513. PubMed ID: 26845186 [TBL] [Abstract][Full Text] [Related]
11. Characterization of modified biochars prepared at low pyrolysis temperature as an efficient adsorbent for atrazine removal. Zhao L; Yang F; Jiang Q; Zhu M; Jiang Z; Tang Y; Zhang Y Environ Sci Pollut Res Int; 2018 Jan; 25(2):1405-1417. PubMed ID: 29090437 [TBL] [Abstract][Full Text] [Related]
12. Typical agricultural diffuse herbicide sorption with agricultural waste-derived biochars amended soil of high organic matter content. Ouyang W; Zhao X; Tysklind M; Hao F Water Res; 2016 Apr; 92():156-63. PubMed ID: 26852289 [TBL] [Abstract][Full Text] [Related]
13. Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study. Liu N; Charrua AB; Weng CH; Yuan X; Ding F Bioresour Technol; 2015 Dec; 198():55-62. PubMed ID: 26364228 [TBL] [Abstract][Full Text] [Related]
14. Characterization of peanut-shell biochar and the mechanisms underlying its sorption for atrazine and nicosulfuron in aqueous solution. Wang P; Liu X; Yu B; Wu X; Xu J; Dong F; Zheng Y Sci Total Environ; 2020 Feb; 702():134767. PubMed ID: 31726335 [TBL] [Abstract][Full Text] [Related]
15. Effect of Fe-N modification on the properties of biochars and their adsorption behavior on tetracycline removal from aqueous solution. Mei Y; Xu J; Zhang Y; Li B; Fan S; Xu H Bioresour Technol; 2021 Apr; 325():124732. PubMed ID: 33493749 [TBL] [Abstract][Full Text] [Related]
16. Characterization of sorption processes for the development of low-cost pesticide decontamination techniques. Rojas R; Vanderlinden E; Morillo J; Usero J; El Bakouri H Sci Total Environ; 2014 Aug; 488-489():124-35. PubMed ID: 24830926 [TBL] [Abstract][Full Text] [Related]
17. Removal of levofloxacin from aqueous solution using rice-husk and wood-chip biochars. Yi S; Gao B; Sun Y; Wu J; Shi X; Wu B; Hu X Chemosphere; 2016 May; 150():694-701. PubMed ID: 26796588 [TBL] [Abstract][Full Text] [Related]
18. Rapid removal of triazine pesticides by P doped biochar and the adsorption mechanism. Suo F; You X; Ma Y; Li Y Chemosphere; 2019 Nov; 235():918-925. PubMed ID: 31299705 [TBL] [Abstract][Full Text] [Related]
19. Remediation of pesticides contaminated water using biowastes-derived carbon rich biochar. Eissa F; Alsherbeny S; El-Sawi S; Slaný M; Lee SS; Shaheen SM; Jamil TS Chemosphere; 2023 Nov; 340():139819. PubMed ID: 37586496 [TBL] [Abstract][Full Text] [Related]
20. Efficacy of agricultural waste derived biochar for arsenic removal: Tackling water quality in the Indo-Gangetic plain. Mukherjee S; Thakur AK; Goswami R; Mazumder P; Taki K; Vithanage M; Kumar M J Environ Manage; 2021 Mar; 281():111814. PubMed ID: 33401117 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]