BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 27818134)

  • 41. Gene expression and splicing alterations analyzed by high throughput RNA sequencing of chronic lymphocytic leukemia specimens.
    Liao W; Jordaan G; Nham P; Phan RT; Pelegrini M; Sharma S
    BMC Cancer; 2015 Oct; 15():714. PubMed ID: 26474785
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Aberrant splicing and defective mRNA production induced by somatic spliceosome mutations in myelodysplasia.
    Shiozawa Y; Malcovati L; Gallì A; Sato-Otsubo A; Kataoka K; Sato Y; Watatani Y; Suzuki H; Yoshizato T; Yoshida K; Sanada M; Makishima H; Shiraishi Y; Chiba K; Hellström-Lindberg E; Miyano S; Ogawa S; Cazzola M
    Nat Commun; 2018 Sep; 9(1):3649. PubMed ID: 30194306
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Splicing factor SF3B1 promotes endometrial cancer progression via regulating KSR2 RNA maturation.
    Popli P; Richters MM; Chadchan SB; Kim TH; Tycksen E; Griffith O; Thaker PH; Griffith M; Kommagani R
    Cell Death Dis; 2020 Oct; 11(10):842. PubMed ID: 33040078
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A reduced panel of eight genes (ATM, SF3B1, NOTCH1, BIRC3, XPO1, MYD88, TNFAIP3, and TP53) as an estimator of the tumor mutational burden in chronic lymphocytic leukemia.
    Chauzeix J; Pastoret C; Donaty L; Gachard N; Fest T; Feuillard J; Rizzo D
    Int J Lab Hematol; 2021 Aug; 43(4):683-692. PubMed ID: 33325634
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inhibition of Splicing Factor 3b Subunit 1 (SF3B1) Reduced Cell Proliferation, Induced Apoptosis and Resulted in Cell Cycle Arrest by Regulating Homeobox A10 (HOXA10) Splicing in AGS and MKN28 Human Gastric Cancer Cells.
    Zhang Y; Yuan Z; Jiang Y; Shen R; Gu M; Xu W; Gu X
    Med Sci Monit; 2020 Jan; 26():e919460. PubMed ID: 31927557
    [TBL] [Abstract][Full Text] [Related]  

  • 46. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia.
    Wang L; Lawrence MS; Wan Y; Stojanov P; Sougnez C; Stevenson K; Werner L; Sivachenko A; DeLuca DS; Zhang L; Zhang W; Vartanov AR; Fernandes SM; Goldstein NR; Folco EG; Cibulskis K; Tesar B; Sievers QL; Shefler E; Gabriel S; Hacohen N; Reed R; Meyerson M; Golub TR; Lander ES; Neuberg D; Brown JR; Getz G; Wu CJ
    N Engl J Med; 2011 Dec; 365(26):2497-506. PubMed ID: 22150006
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Clinical monoclonal B lymphocytosis versus Rai 0 chronic lymphocytic leukemia: A comparison of cellular, cytogenetic, molecular, and clinical features.
    Morabito F; Mosca L; Cutrona G; Agnelli L; Tuana G; Ferracin M; Zagatti B; Lionetti M; Fabris S; Maura F; Matis S; Gentile M; Vigna E; Colombo M; Massucco C; Recchia AG; Bossio S; De Stefano L; Ilariucci F; Musolino C; Molica S; Di Raimondo F; Cortelezzi A; Tassone P; Negrini M; Monti S; Rossi D; Gaidano G; Ferrarini M; Neri A
    Clin Cancer Res; 2013 Nov; 19(21):5890-900. PubMed ID: 24036852
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Titration of SF3B1 Activity Reveals Distinct Effects on the Transcriptome and Cell Physiology.
    Kim Guisbert KS; Mossiah I; Guisbert E
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33348896
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Short telomere length is associated with NOTCH1/SF3B1/TP53 aberrations and poor outcome in newly diagnosed chronic lymphocytic leukemia patients.
    Mansouri L; Grabowski P; Degerman S; Svenson U; Gunnarsson R; Cahill N; Smedby KE; Geisler C; Juliusson G; Roos G; Rosenquist R
    Am J Hematol; 2013 Aug; 88(8):647-51. PubMed ID: 23620080
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genetic characterization of SF3B1 mutations in single chronic lymphocytic leukemia cells.
    Wu X; Tschumper RC; Jelinek DF
    Leukemia; 2013 Nov; 27(11):2264-7. PubMed ID: 23685408
    [No Abstract]   [Full Text] [Related]  

  • 51. Aberrant spliceosome activity via elevated intron retention and upregulation and phosphorylation of SF3B1 in chronic lymphocytic leukemia.
    Kashyap MK; Karathia H; Kumar D; Vera Alvarez R; Forero-Forero JV; Moreno E; Lujan JV; Amaya-Chanaga CI; Vidal NM; Yu Z; Ghia EM; Lengerke-Diaz PA; Achinko D; Choi MY; Rassenti LZ; Mariño-Ramírez L; Mount SM; Hannenhalli S; Kipps TJ; Castro JE
    Mol Ther Nucleic Acids; 2024 Jun; 35(2):102202. PubMed ID: 38846999
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Presence of multiple recurrent mutations confers poor trial outcome of relapsed/refractory CLL.
    Guièze R; Robbe P; Clifford R; de Guibert S; Pereira B; Timbs A; Dilhuydy MS; Cabes M; Ysebaert L; Burns A; Nguyen-Khac F; Davi F; Véronèse L; Combes P; Le Garff-Tavernier M; Leblond V; Merle-Béral H; Alsolami R; Hamblin A; Mason J; Pettitt A; Hillmen P; Taylor J; Knight SJ; Tournilhac O; Schuh A
    Blood; 2015 Oct; 126(18):2110-7. PubMed ID: 26316624
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of the aberrant splicing of MAP3K7 induced by cancer-associated SF3B1 mutation.
    Li Z; Zhao B; Shi Y; Liang Y; Qian R; Wan Y
    J Biochem; 2021 Sep; 170(1):69-77. PubMed ID: 33751071
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cancer-Associated SF3B1 Hotspot Mutations Induce Cryptic 3' Splice Site Selection through Use of a Different Branch Point.
    Darman RB; Seiler M; Agrawal AA; Lim KH; Peng S; Aird D; Bailey SL; Bhavsar EB; Chan B; Colla S; Corson L; Feala J; Fekkes P; Ichikawa K; Keaney GF; Lee L; Kumar P; Kunii K; MacKenzie C; Matijevic M; Mizui Y; Myint K; Park ES; Puyang X; Selvaraj A; Thomas MP; Tsai J; Wang JY; Warmuth M; Yang H; Zhu P; Garcia-Manero G; Furman RR; Yu L; Smith PG; Buonamici S
    Cell Rep; 2015 Nov; 13(5):1033-45. PubMed ID: 26565915
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Splicing Factor Mutations in Cancer.
    Bejar R
    Adv Exp Med Biol; 2016; 907():215-28. PubMed ID: 27256388
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Prognostic and predictive role of gene mutations in chronic lymphocytic leukemia: results from the pivotal phase III study COMPLEMENT1.
    Tausch E; Beck P; Schlenk RF; Jebaraj BJ; Dolnik A; Yosifov DY; Hillmen P; Offner F; Janssens A; Babu GK; Grosicki S; Mayer J; Panagiotidis P; McKeown A; Gupta IV; Skorupa A; Pallaud C; Bullinger L; Mertens D; Döhner H; Stilgenbauer S
    Haematologica; 2020 Oct; 105(10):2440-2447. PubMed ID: 33054084
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The SF3B1 inhibitor spliceostatin A (SSA) elicits apoptosis in chronic lymphocytic leukaemia cells through downregulation of Mcl-1.
    Larrayoz M; Blakemore SJ; Dobson RC; Blunt MD; Rose-Zerilli MJ; Walewska R; Duncombe A; Oscier D; Koide K; Forconi F; Packham G; Yoshida M; Cragg MS; Strefford JC; Steele AJ
    Leukemia; 2016 Feb; 30(2):351-60. PubMed ID: 26488112
    [TBL] [Abstract][Full Text] [Related]  

  • 58.
    Miao Y; Zou YX; Gu DL; Zhu HC; Zhu HY; Wang L; Liang JH; Xia Y; Wu JZ; Shao CL; Fan L; Zhang Z; Xu W; Li JY
    Ann Transl Med; 2019 Apr; 7(8):176. PubMed ID: 31168457
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tumor suppressor microRNAs are downregulated in myelodysplastic syndrome with spliceosome mutations.
    Aslan D; Garde C; Nygaard MK; Helbo AS; Dimopoulos K; Hansen JW; Severinsen MT; Treppendahl MB; Sjø LD; Grønbæk K; Kristensen LS
    Oncotarget; 2016 Mar; 7(9):9951-63. PubMed ID: 26848861
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Different impact of NOTCH1 and SF3B1 mutations on the risk of chronic lymphocytic leukemia transformation to Richter syndrome.
    Rossi D; Rasi S; Spina V; Fangazio M; Monti S; Greco M; Ciardullo C; Famà R; Cresta S; Bruscaggin A; Laurenti L; Martini M; Musto P; Forconi F; Marasca R; Larocca LM; Foà R; Gaidano G
    Br J Haematol; 2012 Aug; 158(3):426-9. PubMed ID: 22571487
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.