These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27818152)

  • 1. Establishing a synergetic carbon utilization mechanism for non-catabolic use of glucose in microbial synthesis of trehalose.
    Wu Y; Sun X; Lin Y; Shen X; Yang Y; Jain R; Yuan Q; Yan Y
    Metab Eng; 2017 Jan; 39():1-8. PubMed ID: 27818152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the strategies for microbial production of trehalose from lignocellulosic sugars.
    Wu Y; Wang J; Shen X; Wang J; Chen Z; Sun X; Yuan Q; Yan Y
    Biotechnol Bioeng; 2018 Mar; 115(3):785-790. PubMed ID: 29197181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli.
    Harder BJ; Bettenbrock K; Klamt S
    Metab Eng; 2016 Nov; 38():29-37. PubMed ID: 27269589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of physiological responses to 22 gene knockouts in Escherichia coli central carbon metabolism.
    Long CP; Gonzalez JE; Sandoval NR; Antoniewicz MR
    Metab Eng; 2016 Sep; 37():102-113. PubMed ID: 27212692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection of an endogenous 2,3-butanediol pathway in Escherichia coli by fermentative redox balance.
    Liang K; Shen CR
    Metab Eng; 2017 Jan; 39():181-191. PubMed ID: 27931827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering E. coli for large-scale production - Strategies considering ATP expenses and transcriptional responses.
    Löffler M; Simen JD; Jäger G; Schäferhoff K; Freund A; Takors R
    Metab Eng; 2016 Nov; 38():73-85. PubMed ID: 27378496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterologous expression of Escherichia coli ppsA (phosphoenolpyruvate synthetase) and galU (UDP-glucose pyrophosphorylase) genes in Corynebacterium glutamicum, and its impact on trehalose synthesis.
    Padilla L; Agosin E
    Metab Eng; 2005 Jul; 7(4):260-8. PubMed ID: 15949962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergy as design principle for metabolic engineering of 1-propanol production in Escherichia coli.
    Shen CR; Liao JC
    Metab Eng; 2013 May; 17():12-22. PubMed ID: 23376654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal tracers for parallel labeling experiments and
    Crown SB; Long CP; Antoniewicz MR
    Metab Eng; 2016 Nov; 38():10-18. PubMed ID: 27267409
    [No Abstract]   [Full Text] [Related]  

  • 10. Metabolic engineering of Escherichia coli for efficient free fatty acid production from glycerol.
    Wu H; Karanjikar M; San KY
    Metab Eng; 2014 Sep; 25():82-91. PubMed ID: 25014174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Escherichia coli for microbial synthesis of monolignols.
    Chen Z; Sun X; Li Y; Yan Y; Yuan Q
    Metab Eng; 2017 Jan; 39():102-109. PubMed ID: 27816771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic perturbations in mutants of glucose transporters and their applications in metabolite production in Escherichia coli.
    Jung HM; Im DK; Lim JH; Jung GY; Oh MK
    Microb Cell Fact; 2019 Oct; 18(1):170. PubMed ID: 31601271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering flux adjustments of engineered E. coli cells during fermentation with changing growth conditions.
    He L; Xiu Y; Jones JA; Baidoo EEK; Keasling JD; Tang YJ; Koffas MAG
    Metab Eng; 2017 Jan; 39():247-256. PubMed ID: 28017690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering E. coli for the biosynthesis of 3-hydroxy-γ-butyrolactone (3HBL) and 3,4-dihydroxybutyric acid (3,4-DHBA) as value-added chemicals from glucose as a sole carbon source.
    Dhamankar H; Tarasova Y; Martin CH; Prather KL
    Metab Eng; 2014 Sep; 25():72-81. PubMed ID: 24954784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Efficient Production of
    Ma Q; Sun Q; Tan M; Xia L; Zhang Y; Yang M; Zhuo M; Zhao K; Li Y; Xu Q; Chen N; Xie X
    J Agric Food Chem; 2021 Jun; 69(21):5966-5975. PubMed ID: 34004112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction.
    Kogure T; Kubota T; Suda M; Hiraga K; Inui M
    Metab Eng; 2016 Nov; 38():204-216. PubMed ID: 27553883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Escherichia coli for the synthesis of short- and medium-chain α,β-unsaturated carboxylic acids.
    Kim S; Cheong S; Gonzalez R
    Metab Eng; 2016 Jul; 36():90-98. PubMed ID: 26996381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose.
    Chen Z; Huang J; Wu Y; Wu W; Zhang Y; Liu D
    Metab Eng; 2017 Jan; 39():151-158. PubMed ID: 27918882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli.
    Whitaker WB; Jones JA; Bennett RK; Gonzalez JE; Vernacchio VR; Collins SM; Palmer MA; Schmidt S; Antoniewicz MR; Koffas MA; Papoutsakis ET
    Metab Eng; 2017 Jan; 39():49-59. PubMed ID: 27815193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic design of a platform Escherichia coli strain producing various chorismate derivatives.
    Noda S; Shirai T; Oyama S; Kondo A
    Metab Eng; 2016 Jan; 33():119-129. PubMed ID: 26654797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.