These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1143 related articles for article (PubMed ID: 27818295)
1. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication. Lee DH; Tripathy N; Shin JH; Song JE; Cha JG; Min KD; Park CH; Khang G Int J Biol Macromol; 2017 Feb; 95():14-23. PubMed ID: 27818295 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering. Tong S; Xu DP; Liu ZM; Du Y; Wang XK Int J Mol Med; 2016 Aug; 38(2):367-80. PubMed ID: 27352815 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521 [TBL] [Abstract][Full Text] [Related]
4. Biofunctional Ionic-Doped Calcium Phosphates: Silk Fibroin Composites for Bone Tissue Engineering Scaffolding. Pina S; Canadas RF; Jiménez G; Perán M; Marchal JA; Reis RL; Oliveira JM Cells Tissues Organs; 2017; 204(3-4):150-163. PubMed ID: 28803246 [TBL] [Abstract][Full Text] [Related]
5. The incorporation of β-tricalcium phosphate nanoparticles within silk fibroin composite scaffolds for enhanced bone regeneration: An in vitro and in vivo study. Jing T; Yi Liu ; Xu L; Chen C; Liu F J Biomater Appl; 2022 Apr; 36(9):1567-1578. PubMed ID: 35135370 [TBL] [Abstract][Full Text] [Related]
6. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells. Gandhimathi C; Venugopal JR; Tham AY; Ramakrishna S; Kumar SD Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():776-785. PubMed ID: 25687008 [TBL] [Abstract][Full Text] [Related]
7. Repair of rabbit radial bone defects using bone morphogenetic protein-2 combined with 3D porous silk fibroin/β-tricalcium phosphate hybrid scaffolds. Song J; Kim J; Woo HM; Yoon B; Park H; Park C; Kang BJ J Biomater Sci Polym Ed; 2018 Apr; 29(6):716-729. PubMed ID: 29405844 [TBL] [Abstract][Full Text] [Related]
8. 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering. Luo J; Zhang H; Zhu J; Cui X; Gao J; Wang X; Xiong J Colloids Surf B Biointerfaces; 2018 Mar; 163():369-378. PubMed ID: 29335199 [TBL] [Abstract][Full Text] [Related]
9. Biocompatible silk/calcium silicate/sodium alginate composite scaffolds for bone tissue engineering. Zheng A; Cao L; Liu Y; Wu J; Zeng D; Hu L; Zhang X; Jiang X Carbohydr Polym; 2018 Nov; 199():244-255. PubMed ID: 30143127 [TBL] [Abstract][Full Text] [Related]
10. Quercetin Inlaid Silk Fibroin/Hydroxyapatite Scaffold Promotes Enhanced Osteogenesis. Song JE; Tripathy N; Lee DH; Park JH; Khang G ACS Appl Mater Interfaces; 2018 Oct; 10(39):32955-32964. PubMed ID: 30188112 [TBL] [Abstract][Full Text] [Related]
11. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering. Kim JH; Kim DK; Lee OJ; Ju HW; Lee JM; Moon BM; Park HJ; Kim DW; Lee JH; Park CH Int J Biol Macromol; 2016 Jan; 82():160-7. PubMed ID: 26257379 [TBL] [Abstract][Full Text] [Related]
12. Fabrication and characterization of drug-loaded nano-hydroxyapatite/polyamide 66 scaffolds modified with carbon nanotubes and silk fibroin. Yao MZ; Huang-Fu MY; Liu HN; Wang XR; Sheng X; Gao JQ Int J Nanomedicine; 2016; 11():6181-6194. PubMed ID: 27920525 [TBL] [Abstract][Full Text] [Related]
13. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application. Singh BN; Panda NN; Mund R; Pramanik K Carbohydr Polym; 2016 Oct; 151():335-347. PubMed ID: 27474575 [TBL] [Abstract][Full Text] [Related]
14. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2. Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062 [TBL] [Abstract][Full Text] [Related]
15. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat. Yu X; Shen G; Shang Q; Zhang Z; Zhao W; Zhang P; Liang D; Ren H; Jiang X Int J Biol Macromol; 2021 Dec; 193(Pt A):510-518. PubMed ID: 34710477 [TBL] [Abstract][Full Text] [Related]
16. Silk fibroin/chitosan scaffold with tunable properties and low inflammatory response assists the differentiation of bone marrow mesenchymal stem cells. Li DW; Lei X; He FL; He J; Liu YL; Ye YJ; Deng X; Duan E; Yin DC Int J Biol Macromol; 2017 Dec; 105(Pt 1):584-597. PubMed ID: 28802849 [TBL] [Abstract][Full Text] [Related]
17. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation. Paşcu EI; Cahill PA; Stokes J; McGuinness GB J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394 [TBL] [Abstract][Full Text] [Related]
18. Enhanced bone regeneration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide. Wu J; Zheng A; Liu Y; Jiao D; Zeng D; Wang X; Cao L; Jiang X Int J Nanomedicine; 2019; 14():733-751. PubMed ID: 30705589 [TBL] [Abstract][Full Text] [Related]
19. Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering. Khojasteh A; Fahimipour F; Eslaminejad MB; Jafarian M; Jahangir S; Bastami F; Tahriri M; Karkhaneh A; Tayebi L Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():780-8. PubMed ID: 27612772 [TBL] [Abstract][Full Text] [Related]
20. Preparation and characterization of gelatin/α-TCP/SF biocomposite scaffold for bone tissue regeneration. Huh J; Lee J; Kim W; Yeo M; Kim G Int J Biol Macromol; 2018 Apr; 110():488-496. PubMed ID: 28917939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]