BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 27818579)

  • 1. Visualizing the Search for Radiation-damaged DNA Bases in Real Time.
    Lee AJ; Wallace SS
    Radiat Phys Chem Oxf Engl 1993; 2016 Nov; 128():126-133. PubMed ID: 27818579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hide and seek: How do DNA glycosylases locate oxidatively damaged DNA bases amidst a sea of undamaged bases?
    Lee AJ; Wallace SS
    Free Radic Biol Med; 2017 Jun; 107():170-178. PubMed ID: 27865982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two glycosylase families diffusively scan DNA using a wedge residue to probe for and identify oxidatively damaged bases.
    Nelson SR; Dunn AR; Kathe SD; Warshaw DM; Wallace SS
    Proc Natl Acad Sci U S A; 2014 May; 111(20):E2091-9. PubMed ID: 24799677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single Qdot-labeled glycosylase molecules use a wedge amino acid to probe for lesions while scanning along DNA.
    Dunn AR; Kad NM; Nelson SR; Warshaw DM; Wallace SS
    Nucleic Acids Res; 2011 Sep; 39(17):7487-98. PubMed ID: 21666255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative DNA damage repair in mammalian cells: a new perspective.
    Hazra TK; Das A; Das S; Choudhury S; Kow YW; Roy R
    DNA Repair (Amst); 2007 Apr; 6(4):470-80. PubMed ID: 17116430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Fpg/Nei family of DNA glycosylases: substrates, structures, and search for damage.
    Prakash A; Doublié S; Wallace SS
    Prog Mol Biol Transl Sci; 2012; 110():71-91. PubMed ID: 22749143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA glycosylases search for and remove oxidized DNA bases.
    Wallace SS
    Environ Mol Mutagen; 2013 Dec; 54(9):691-704. PubMed ID: 24123395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repair of oxidative DNA damage: mechanisms and functions.
    Lu AL; Li X; Gu Y; Wright PM; Chang DY
    Cell Biochem Biophys; 2001; 35(2):141-70. PubMed ID: 11892789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimutagenic role of base-excision repair enzymes upon free radical-induced DNA damage.
    Laval J; Jurado J; Saparbaev M; Sidorkina O
    Mutat Res; 1998 Jun; 402(1-2):93-102. PubMed ID: 9675252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consequences and repair of radiation-induced DNA damage: fifty years of fun questions and answers.
    Wallace SS
    Int J Radiat Biol; 2022; 98(3):367-382. PubMed ID: 34187282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the glycosylase search for damage from single-molecule fluorescence microscopy.
    Lee AJ; Warshaw DM; Wallace SS
    DNA Repair (Amst); 2014 Aug; 20():23-31. PubMed ID: 24560296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression and purification of NEIL3, a human DNA glycosylase homolog.
    Krokeide SZ; Bolstad N; Laerdahl JK; Bjørås M; Luna L
    Protein Expr Purif; 2009 Jun; 65(2):160-4. PubMed ID: 19121397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of DNA repair glycosylases by base analogs and tryptophan pyrolysate, Trp-P-1.
    Speina E; Cieśla JM; Graziewicz MA; Laval J; Kazimierczuk Z; Tudek B
    Acta Biochim Pol; 2005; 52(1):167-78. PubMed ID: 15827615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation.
    Kladova OA; Bazlekowa-Karaban M; Baconnais S; Piétrement O; Ishchenko AA; Matkarimov BT; Iakovlev DA; Vasenko A; Fedorova OS; Le Cam E; Tudek B; Kuznetsov NA; Saparbaev M
    DNA Repair (Amst); 2018 Apr; 64():10-25. PubMed ID: 29475157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The contribution of Nth and Nei DNA glycosylases to mutagenesis in Mycobacterium smegmatis.
    Moolla N; Goosens VJ; Kana BD; Gordhan BG
    DNA Repair (Amst); 2014 Jan; 13():32-41. PubMed ID: 24342191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The novel DNA glycosylase, NEIL1, protects mammalian cells from radiation-mediated cell death.
    Rosenquist TA; Zaika E; Fernandes AS; Zharkov DO; Miller H; Grollman AP
    DNA Repair (Amst); 2003 May; 2(5):581-91. PubMed ID: 12713815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate specificity and excision kinetics of Escherichia coli endonuclease VIII (Nei) for modified bases in DNA damaged by free radicals.
    Dizdaroglu M; Burgess SM; Jaruga P; Hazra TK; Rodriguez H; Lloyd RS
    Biochemistry; 2001 Oct; 40(40):12150-6. PubMed ID: 11580290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aberrant base excision repair pathway of oxidatively damaged DNA: Implications for degenerative diseases.
    Talhaoui I; Matkarimov BT; Tchenio T; Zharkov DO; Saparbaev MK
    Free Radic Biol Med; 2017 Jun; 107():266-277. PubMed ID: 27890638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A combinatorial role for MutY and Fpg DNA glycosylases in mutation avoidance in Mycobacterium smegmatis.
    Hassim F; Papadopoulos AO; Kana BD; Gordhan BG
    Mutat Res; 2015 Sep; 779():24-32. PubMed ID: 26125998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel substrates of Escherichia coli nth protein and its kinetics for excision of modified bases from DNA damaged by free radicals.
    Dizdaroglu M; Bauche C; Rodriguez H; Laval J
    Biochemistry; 2000 May; 39(18):5586-92. PubMed ID: 10820032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.