These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27818909)

  • 1. Prussian Blue Mg-Li Hybrid Batteries.
    Sun X; Duffort V; Nazar LF
    Adv Sci (Weinh); 2016 Aug; 3(8):1600044. PubMed ID: 27818909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron-Vanadium Incorporated Ferrocyanides as Potential Cathode Materials for Application in Sodium-Ion Batteries.
    Nguyen TP; Kim IT
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnesium/Lithium-Ion Hybrid Battery with High Reversibility by Employing NaV
    Rashad M; Li X; Zhang H
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21313-21320. PubMed ID: 29862802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-intercalation of Mg(2+) and Na(+) in Na(0.69)Fe2(CN)6 as a High-Voltage Cathode for Magnesium Batteries.
    Kim DM; Kim Y; Arumugam D; Woo SW; Jo YN; Park MS; Kim YJ; Choi NS; Lee KT
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8554-60. PubMed ID: 26967192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Performance Mg-Li Hybrid Batteries Based on Pseudocapacitive Anatase Ti
    Vincent M; Avvaru VS; Haranczyk M; Etacheri V
    ChemSusChem; 2022 Mar; 15(6):e202102562. PubMed ID: 35060341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Operation Mechanism in Hybrid Mg-Li Batteries with TiNb
    Maletti S; Janson O; Herzog-Arbeitman A; Gonzalez Martinez IG; Buckan R; Fischer J; Senyshyn A; Missyul A; Etter M; Mikhailova D
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6309-6321. PubMed ID: 33527829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unravelling Li
    He J; Tao T; Yang F; Sun Z
    ChemSusChem; 2022 Aug; 15(15):e202200817. PubMed ID: 35642616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A High Rate and Stable Hybrid Li/Na-Ion Battery Based on a Hydrated Molten Inorganic Salt Electrolyte.
    Wang Z; Xu Y; Peng J; Ou M; Wei P; Fang C; Li Q; Huang J; Han J; Huang Y
    Small; 2021 Oct; 17(40):e2101650. PubMed ID: 34453487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Architecting hierarchical shell porosity of hollow prussian blue-derived iron oxide for enhanced Li storage.
    Zhao Z; Liu X; Luan C; Liu X; Wang D; Qin T; Sui L; Zhang W
    J Microsc; 2019 Nov; 276(2):53-62. PubMed ID: 31603242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorinated High-Voltage Electrolytes To Stabilize Nickel-Rich Lithium Batteries.
    Poches C; Razzaq AA; Studer H; Ogilvie R; Lama B; Paudel TR; Li X; Pupek K; Xing W
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):43648-43655. PubMed ID: 37696006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of ternary metal oxides as positive electrodes for Mg-Li hybrid ion batteries.
    Asif M; Rashad M; Ali Z; Ahmed I
    Nanoscale; 2020 Jan; 12(2):924-932. PubMed ID: 31834337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybridizing Tetraglyme to Aqueous Electrolyte with Concentrated Salts Promote Intercalation of Anions on Graphite Cathode in Dual-Ion Battery.
    Yang D; Watanabe M; Ishihara T
    Small Methods; 2023 Sep; 7(9):e2300249. PubMed ID: 37226699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-supporting V
    Diem AM; Hildenbrand K; Raafat L; Bill J; Burghard Z
    RSC Adv; 2021 Jan; 11(3):1354-1359. PubMed ID: 35424108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries.
    Zhang Z; Avdeev M; Chen H; Yin W; Kan WH; He G
    Nat Commun; 2022 Dec; 13(1):7790. PubMed ID: 36526618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun FeS2@Carbon Fiber Electrode as a High Energy Density Cathode for Rechargeable Lithium Batteries.
    Zhu Y; Fan X; Suo L; Luo C; Gao T; Wang C
    ACS Nano; 2016 Jan; 10(1):1529-38. PubMed ID: 26700975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Low-Strain Potassium-Rich Prussian Blue Analogue Cathode for High Power Potassium-Ion Batteries.
    Li L; Hu Z; Lu Y; Wang C; Zhang Q; Zhao S; Peng J; Zhang K; Chou SL; Chen J
    Angew Chem Int Ed Engl; 2021 Jun; 60(23):13050-13056. PubMed ID: 33780584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid Electrolyte with Dual-Anion-Aggregated Solvation Sheath for Stabilizing High-Voltage Lithium-Metal Batteries.
    Wang X; Wang S; Wang H; Tu W; Zhao Y; Li S; Liu Q; Wu J; Fu Y; Han C; Kang F; Li B
    Adv Mater; 2021 Dec; 33(52):e2007945. PubMed ID: 34676906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pre-Solid Electrolyte Interphase-Covered Li Metal Anode with Improved Electro-Chemo-Mechanical Reliability in High-Energy-Density Batteries.
    Chen X; Shang M; Niu J
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34064-34073. PubMed ID: 34264650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rechargeable Mg-M (M = Li, Na and K) dual-metal-ion batteries based on a Berlin green cathode and a metallic Mg anode.
    Zhang Y; Shen J; Li X; Chen Z; Cao SA; Li T; Xu F
    Phys Chem Chem Phys; 2019 Sep; 21(36):20269-20275. PubMed ID: 31490519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.