These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 27818949)
81. Magnetic resonance imaging of therapy-induced necrosis using gadolinium-chelated polyglutamic acids. Jackson EF; Esparza-Coss E; Wen X; Ng CS; Daniel SL; Price RE; Rivera B; Charnsangavej C; Gelovani JG; Li C Int J Radiat Oncol Biol Phys; 2007 Jul; 68(3):830-8. PubMed ID: 17379450 [TBL] [Abstract][Full Text] [Related]
82. More advantages in detecting bone and soft tissue metastases from prostate cancer using Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003 [TBL] [Abstract][Full Text] [Related]
83. Evaluation of (99m)Tc-HYNIC-TMTP1 as a tumor-homing imaging agent targeting metastasis with SPECT. Li F; Cheng T; Dong Q; Wei R; Zhang Z; Luo D; Ma X; Wang S; Gao Q; Ma D; Zhu X; Xi L Nucl Med Biol; 2015 Mar; 42(3):256-62. PubMed ID: 25516099 [TBL] [Abstract][Full Text] [Related]
84. NIRF Optical/PET Dual-Modal Imaging of Hepatocellular Carcinoma Using Heptamethine Carbocyanine Dye. Zhang C; Zhao Y; Zhao N; Tan D; Zhang H; Chen X; Zhang H; An J; Shi C; Li M Contrast Media Mol Imaging; 2018; 2018():4979746. PubMed ID: 29706843 [TBL] [Abstract][Full Text] [Related]
85. Detection of somatostatin receptor-positive tumours using the new 99mTc-tricine-HYNIC-D-Phe1-Tyr3-octreotide: first results in patients and comparison with 111In-DTPA-D-Phe1-octreotide. Bangard M; Béhé M; Guhlke S; Otte R; Bender H; Maecke HR; Biersack HJ Eur J Nucl Med; 2000 Jun; 27(6):628-37. PubMed ID: 10901448 [TBL] [Abstract][Full Text] [Related]
86. Near-infrared fluorescence imaging with fluorescently labeled albumin: a novel method for non-invasive optical imaging of blood-brain barrier impairment after focal cerebral ischemia in mice. Klohs J; Steinbrink J; Bourayou R; Mueller S; Cordell R; Licha K; Schirner M; Dirnagl U; Lindauer U; Wunder A J Neurosci Methods; 2009 May; 180(1):126-32. PubMed ID: 19427539 [TBL] [Abstract][Full Text] [Related]
87. In Vitro and In Vivo Characterization of Allen KJH; Jiao R; Li J; Beckford-Vera DR; Dadachova E Molecules; 2022 Oct; 27(19):. PubMed ID: 36235126 [No Abstract] [Full Text] [Related]
89. Ex Vivo and In Vivo Noninvasive Imaging of Epidermal Growth Factor Receptor Inhibition on Colon Tumorigenesis Using Activatable Near-Infrared Fluorescent Probes. Ding S; Blue RE; Moorefield E; Yuan H; Lund PK Mol Imaging; 2017; 16():1536012117729044. PubMed ID: 28884622 [TBL] [Abstract][Full Text] [Related]
90. WE-C-217BCD-04: Multimodality Imaging of Breast Cancer Experimental Lung Metastasis. Zhang Y; Hong H; Yang Y; Severin G; Engle J; Niu G; Chen X; Leigh B; Barnhart T; Cai W Med Phys; 2012 Jun; 39(6Part27):3950. PubMed ID: 28519986 [TBL] [Abstract][Full Text] [Related]
91. Biodistribution and anti-tumor efficacy of intratumorally injected necrosis-avid theranostic agent radioiodinated hypericin in rodent tumor models. Liu W; Zhang D; Feng Y; Li Y; Huang D; Jiang C; Gao M; Peng F; Wang X; Jing S; Jiang X; Ni Y; Zhang J J Drug Target; 2015 May; 23(4):371-9. PubMed ID: 25572455 [TBL] [Abstract][Full Text] [Related]
92. Preparation and preclinical characterization of Alirezapour B; Ashkezari MD; Fini MM; Rasaee MJ; Mohammadnejad J; Paknejad M; Maadi E; Yousefnia H; Zolghadri S J Cancer Res Ther; 2022; 18(1):158-167. PubMed ID: 35381778 [TBL] [Abstract][Full Text] [Related]
93. In Vivo Evaluation of Gallium-68-Labeled IRDye800CW as a Necrosis Avid Contrast Agent in Solid Tumors. Stroet MCM; de Blois E; Haeck J; Seimbille Y; Mezzanotte L; de Jong M; Löwik CWGM; Panth KM Contrast Media Mol Imaging; 2021; 2021():2853522. PubMed ID: 34987318 [TBL] [Abstract][Full Text] [Related]
94. In Vivo Evaluation of a Gallium-68-Labeled Tumor-Tracking Cyanine Dye for Positron Emission Tomography/Near-Infrared Fluorescence Carcinoma Imaging, Image-Guided Surgery, and Photothermal Therapy. Zhu J; Jiang Y; Pan X; Xu K; Niu W; Lv Y; Li C; Wang Y; Xue Z; Lei P; He Y ACS Omega; 2023 Feb; 8(6):6067-6077. PubMed ID: 36816684 [TBL] [Abstract][Full Text] [Related]
95. Folate-receptor-targeted laser-activable poly(lactide- Liu F; Chen Y; Li Y; Guo Y; Cao Y; Li P; Wang Z; Gong Y; Ran H Int J Nanomedicine; 2018; 13():5139-5158. PubMed ID: 30233177 [TBL] [Abstract][Full Text] [Related]
96. Fast Noninvasive Measurement of Brown Adipose Tissue in Living Mice by Near-Infrared Fluorescence and Photoacoustic Imaging. Li W; Ma J; Jiang Q; Zhang T; Qi Q; Cheng Y Anal Chem; 2020 Mar; 92(5):3787-3794. PubMed ID: 32066237 [TBL] [Abstract][Full Text] [Related]
97. High resolution combined molecular and structural optical imaging of colorectal cancer in a xenograft mouse model. Feroldi F; Verlaan M; Knaus H; Davidoiu V; Vugts DJ; van Dongen GAMS; Molthoff CFM; de Boer JF Biomed Opt Express; 2018 Dec; 9(12):6186-6204. PubMed ID: 31065422 [TBL] [Abstract][Full Text] [Related]
98. Photoacoustic lifetime oxygen imaging of radiotherapy-induced tumor reoxygenation Folz J; Jo J; Gonzalez ME; Eido A; Zhai T; Caruso R; Kleer CG; Wang X; Kopelman R J Photochem Photobiol; 2024 Jun; 21():. PubMed ID: 39005728 [TBL] [Abstract][Full Text] [Related]