BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 27819294)

  • 1. Big genomics and clinical data analytics strategies for precision cancer prognosis.
    Ow GS; Kuznetsov VA
    Sci Rep; 2016 Nov; 6():36493. PubMed ID: 27819294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feature Selection is Critical for 2-Year Prognosis in Advanced Stage High Grade Serous Ovarian Cancer by Using Machine Learning.
    Laios A; Katsenou A; Tan YS; Johnson R; Otify M; Kaufmann A; Munot S; Thangavelu A; Hutson R; Broadhead T; Theophilou G; Nugent D; De Jong D
    Cancer Control; 2021; 28():10732748211044678. PubMed ID: 34693730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Big data and computational biology strategy for personalized prognosis.
    Ow GS; Tang Z; Kuznetsov VA
    Oncotarget; 2016 Jun; 7(26):40200-40220. PubMed ID: 27229533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meta-analysis of transcriptome reveals let-7b as an unfavorable prognostic biomarker and predicts molecular and clinical subclasses in high-grade serous ovarian carcinoma.
    Tang Z; Ow GS; Thiery JP; Ivshina AV; Kuznetsov VA
    Int J Cancer; 2014 Jan; 134(2):306-18. PubMed ID: 23825028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting factors for survival of breast cancer patients using machine learning techniques.
    Ganggayah MD; Taib NA; Har YC; Lio P; Dhillon SK
    BMC Med Inform Decis Mak; 2019 Mar; 19(1):48. PubMed ID: 30902088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical-learning strategies generate only modestly performing predictive models for urinary symptoms following external beam radiotherapy of the prostate: A comparison of conventional and machine-learning methods.
    Yahya N; Ebert MA; Bulsara M; House MJ; Kennedy A; Joseph DJ; Denham JW
    Med Phys; 2016 May; 43(5):2040. PubMed ID: 27147316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying people at risk of developing type 2 diabetes: A comparison of predictive analytics techniques and predictor variables.
    Talaei-Khoei A; Wilson JM
    Int J Med Inform; 2018 Nov; 119():22-38. PubMed ID: 30342683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning techniques for personalized breast cancer risk prediction: comparison with the BCRAT and BOADICEA models.
    Ming C; Viassolo V; Probst-Hensch N; Chappuis PO; Dinov ID; Katapodi MC
    Breast Cancer Res; 2019 Jun; 21(1):75. PubMed ID: 31221197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of lung cancer patient survival via supervised machine learning classification techniques.
    Lynch CM; Abdollahi B; Fuqua JD; de Carlo AR; Bartholomai JA; Balgemann RN; van Berkel VH; Frieboes HB
    Int J Med Inform; 2017 Dec; 108():1-8. PubMed ID: 29132615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Machine Learning Applications to Accelerate Personalized Medicine in Breast Cancer: Rise of the Support Vector Machines.
    Ozer ME; Sarica PO; Arga KY
    OMICS; 2020 May; 24(5):241-246. PubMed ID: 32228365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning models in breast cancer survival prediction.
    Montazeri M; Montazeri M; Montazeri M; Beigzadeh A
    Technol Health Care; 2016; 24(1):31-42. PubMed ID: 26409558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial Intelligence in Ovarian Cancer Diagnosis.
    Akazawa M; Hashimoto K
    Anticancer Res; 2020 Aug; 40(8):4795-4800. PubMed ID: 32727807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. kESVR: An Ensemble Model for Drug Response Prediction in Precision Medicine Using Cancer Cell Lines Gene Expression.
    Majumdar A; Liu Y; Lu Y; Wu S; Cheng L
    Genes (Basel); 2021 May; 12(6):. PubMed ID: 34070793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cancer survival classification using integrated data sets and intermediate information.
    Kim S; Park T; Kon M
    Artif Intell Med; 2014 Sep; 62(1):23-31. PubMed ID: 24997860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subtype classification and heterogeneous prognosis model construction in precision medicine.
    You N; He S; Wang X; Zhu J; Zhang H
    Biometrics; 2018 Sep; 74(3):814-822. PubMed ID: 29359319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extreme learning machine for regression and multiclass classification.
    Huang GB; Zhou H; Ding X; Zhang R
    IEEE Trans Syst Man Cybern B Cybern; 2012 Apr; 42(2):513-29. PubMed ID: 21984515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Models of logistic regression analysis, support vector machine, and back-propagation neural network based on serum tumor markers in colorectal cancer diagnosis.
    Zhang B; Liang XL; Gao HY; Ye LS; Wang YG
    Genet Mol Res; 2016 May; 15(2):. PubMed ID: 27323037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SNRFCB: sub-network based random forest classifier for predicting chemotherapy benefit on survival for cancer treatment.
    Shi M; He J
    Mol Biosyst; 2016 Apr; 12(4):1214-23. PubMed ID: 26864276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated clinical-genomics approach identifies a candidate multi-analyte blood test for serous ovarian carcinoma.
    Meinhold-Heerlein I; Bauerschlag D; Zhou Y; Sapinoso LM; Ching K; Frierson H; Bräutigam K; Sehouli J; Stickeler E; Könsgen D; Hilpert F; von Kaisenberg CS; Pfisterer J; Bauknecht T; Jonat W; Arnold N; Hampton GM
    Clin Cancer Res; 2007 Jan; 13(2 Pt 1):458-66. PubMed ID: 17255266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PCM-SABRE: a platform for benchmarking and comparing outcome prediction methods in precision cancer medicine.
    Eyal-Altman N; Last M; Rubin E
    BMC Bioinformatics; 2017 Jan; 18(1):40. PubMed ID: 28095769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.