BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 27819294)

  • 21. A Fast SVD-Hidden-nodes based Extreme Learning Machine for Large-Scale Data Analytics.
    Deng WY; Bai Z; Huang GB; Zheng QH
    Neural Netw; 2016 May; 77():14-28. PubMed ID: 26907860
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Innovations in Genomics and Big Data Analytics for Personalized Medicine and Health Care: A Review.
    Hassan M; Awan FM; Naz A; deAndrés-Galiana EJ; Alvarez O; Cernea A; Fernández-Brillet L; Fernández-Martínez JL; Kloczkowski A
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563034
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A dropout-regularized classifier development approach optimized for precision medicine test discovery from omics data.
    Roder J; Oliveira C; Net L; Tsypin M; Linstid B; Roder H
    BMC Bioinformatics; 2019 Jun; 20(1):325. PubMed ID: 31196002
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting cancer outcomes from histology and genomics using convolutional networks.
    Mobadersany P; Yousefi S; Amgad M; Gutman DA; Barnholtz-Sloan JS; Velázquez Vega JE; Brat DJ; Cooper LAD
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):E2970-E2979. PubMed ID: 29531073
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanistically derived patient-level framework for precision medicine identifies a personalized immune prognostic signature in high-grade serous ovarian cancer.
    Zhao H; Gu S; Bao S; Yan C; Zhang Z; Hou P; Zhou M; Sun J
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32436954
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A deep learning-based multi-model ensemble method for cancer prediction.
    Xiao Y; Wu J; Lin Z; Zhao X
    Comput Methods Programs Biomed; 2018 Jan; 153():1-9. PubMed ID: 29157442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Big-Data Analysis, Cluster Analysis, and Machine-Learning Approaches.
    Alonso-Betanzos A; Bolón-Canedo V
    Adv Exp Med Biol; 2018; 1065():607-626. PubMed ID: 30051410
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A machine learning-based framework to identify type 2 diabetes through electronic health records.
    Zheng T; Xie W; Xu L; He X; Zhang Y; You M; Yang G; Chen Y
    Int J Med Inform; 2017 Jan; 97():120-127. PubMed ID: 27919371
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A machine learning-based approach to prognostic analysis of thoracic transplantations.
    Delen D; Oztekin A; Kong ZJ
    Artif Intell Med; 2010 May; 49(1):33-42. PubMed ID: 20153956
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binding Activity Prediction of Cyclin-Dependent Inhibitors.
    Saha I; Rak B; Bhowmick SS; Maulik U; Bhattacharjee D; Koch U; Lazniewski M; Plewczynski D
    J Chem Inf Model; 2015 Jul; 55(7):1469-82. PubMed ID: 26079845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using Big Data Analytics to Advance Precision Radiation Oncology.
    McNutt TR; Benedict SH; Low DA; Moore K; Shpitser I; Jiang W; Lakshminarayanan P; Cheng Z; Han P; Hui X; Nakatsugawa M; Lee J; Moore JA; Robertson SP; Shah V; Taylor R; Quon H; Wong J; DeWeese T
    Int J Radiat Oncol Biol Phys; 2018 Jun; 101(2):285-291. PubMed ID: 29726357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adaptive contrast weighted learning for multi-stage multi-treatment decision-making.
    Tao Y; Wang L
    Biometrics; 2017 Mar; 73(1):145-155. PubMed ID: 27213913
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Improved Ensemble of Random Vector Functional Link Networks Based on Particle Swarm Optimization with Double Optimization Strategy.
    Ling QH; Song YQ; Han F; Yang D; Huang DS
    PLoS One; 2016; 11(11):e0165803. PubMed ID: 27835638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards.
    Churpek MM; Yuen TC; Winslow C; Meltzer DO; Kattan MW; Edelson DP
    Crit Care Med; 2016 Feb; 44(2):368-74. PubMed ID: 26771782
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine learning for precision medicine.
    MacEachern SJ; Forkert ND
    Genome; 2021 Apr; 64(4):416-425. PubMed ID: 33091314
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Teaching a Machine to Feel Postoperative Pain: Combining High-Dimensional Clinical Data with Machine Learning Algorithms to Forecast Acute Postoperative Pain.
    Tighe PJ; Harle CA; Hurley RW; Aytug H; Boezaart AP; Fillingim RB
    Pain Med; 2015 Jul; 16(7):1386-401. PubMed ID: 26031220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Big Data and machine learning in radiation oncology: State of the art and future prospects.
    Bibault JE; Giraud P; Burgun A
    Cancer Lett; 2016 Nov; 382(1):110-117. PubMed ID: 27241666
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Patient classification and outcome prediction in IgA nephropathy.
    Diciolla M; Binetti G; Di Noia T; Pesce F; Schena FP; Vågane AM; Bjørneklett R; Suzuki H; Tomino Y; Naso D
    Comput Biol Med; 2015 Nov; 66():278-86. PubMed ID: 26453758
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of the Prognostic Utility of the Diverse Molecular Data among lncRNA, DNA Methylation, microRNA, and mRNA across Five Human Cancers.
    Xu L; Fengji L; Changning L; Liangcai Z; Yinghui L; Yu L; Shanguang C; Jianghui X
    PLoS One; 2015; 10(11):e0142433. PubMed ID: 26606135
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Machine Learning in Neural Networks.
    Lin E; Tsai SJ
    Adv Exp Med Biol; 2019; 1192():127-137. PubMed ID: 31705493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.