These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Tough silk fibers prepared in air using a biomimetic microfluidic chip. Luo J; Zhang L; Peng Q; Sun M; Zhang Y; Shao H; Hu X Int J Biol Macromol; 2014 May; 66():319-24. PubMed ID: 24613677 [TBL] [Abstract][Full Text] [Related]
5. Tensile properties of synthetic pyriform spider silk fibers depend on the number of repetitive units as well as the presence of N- and C-terminal domains. Zhu H; Rising A; Johansson J; Zhang X; Lin Y; Zhang L; Yi T; Mi J; Meng Q Int J Biol Macromol; 2020 Jul; 154():765-772. PubMed ID: 32169447 [TBL] [Abstract][Full Text] [Related]
6. The effect of terminal globular domains on the response of recombinant mini-spidroins to fiber spinning triggers. Finnigan W; Roberts AD; Ligorio C; Scrutton NS; Breitling R; Blaker JJ; Takano E Sci Rep; 2020 Jun; 10(1):10671. PubMed ID: 32606438 [TBL] [Abstract][Full Text] [Related]
7. Forcibly spun dragline silk fibers from web-building spider Trichonephila clavata ensure robustness irrespective of spinning speed and humidity. Yazawa K; Sasaki U Int J Biol Macromol; 2021 Jan; 168():550-557. PubMed ID: 33333091 [TBL] [Abstract][Full Text] [Related]
8. Two-in-One Spider Silk Protein with Combined Mechanical Features in All-Aqueous Spun Fibers. Saric M; Scheibel T Biomacromolecules; 2023 Apr; 24(4):1744-1750. PubMed ID: 36913547 [TBL] [Abstract][Full Text] [Related]
9. Assembly mechanism of recombinant spider silk proteins. Rammensee S; Slotta U; Scheibel T; Bausch AR Proc Natl Acad Sci U S A; 2008 May; 105(18):6590-5. PubMed ID: 18445655 [TBL] [Abstract][Full Text] [Related]
10. Properties of Biomimetic Artificial Spider Silk Fibers Tuned by PostSpin Bath Incubation. Greco G; Francis J; Arndt T; Schmuck B; G Bäcklund F; Barth A; Johansson J; M Pugno N; Rising A Molecules; 2020 Jul; 25(14):. PubMed ID: 32708777 [TBL] [Abstract][Full Text] [Related]
12. Liquid Crystalline Granules Align in a Hierarchical Structure To Produce Spider Dragline Microfibrils. Lin TY; Masunaga H; Sato R; Malay AD; Toyooka K; Hikima T; Numata K Biomacromolecules; 2017 Apr; 18(4):1350-1355. PubMed ID: 28252955 [TBL] [Abstract][Full Text] [Related]
13. Molecular mechanisms of spider silk. Hu X; Vasanthavada K; Kohler K; McNary S; Moore AM; Vierra CA Cell Mol Life Sci; 2006 Sep; 63(17):1986-99. PubMed ID: 16819558 [TBL] [Abstract][Full Text] [Related]
14. Microfluidic Dry-spinning and Characterization of Regenerated Silk Fibroin Fibers. Peng Q; Shao H; Hu X; Zhang Y J Vis Exp; 2017 Sep; (127):. PubMed ID: 28892028 [TBL] [Abstract][Full Text] [Related]
15. Inducing β-sheets formation in synthetic spider silk fibers by aqueous post-spin stretching. An B; Hinman MB; Holland GP; Yarger JL; Lewis RV Biomacromolecules; 2011 Jun; 12(6):2375-81. PubMed ID: 21574576 [TBL] [Abstract][Full Text] [Related]
16. A Protein-Like Nanogel for Spinning Hierarchically Structured Artificial Spider Silk. He W; Qian D; Wang Y; Zhang G; Cheng Y; Hu X; Wen K; Wang M; Liu Z; Zhou X; Zhu M Adv Mater; 2022 Jul; 34(27):e2201843. PubMed ID: 35509216 [TBL] [Abstract][Full Text] [Related]
17. Dry-Spinning of Artificial Spider Silk Ribbons From Regenerated Natural Spidroin in an Organic Medium. Wang MY; Zhang JP; Chen SL; Qi B; Yao XY; Zhang XH; Li YT; Yang ZH Macromol Rapid Commun; 2023 Jun; 44(12):e2300024. PubMed ID: 37078381 [TBL] [Abstract][Full Text] [Related]
18. Tyrosine's Unique Role in the Hierarchical Assembly of Recombinant Spider Silk Proteins: From Spinning Dope to Fibers. Stengel D; Saric M; Johnson HR; Schiller T; Diehl J; Chalek K; Onofrei D; Scheibel T; Holland GP Biomacromolecules; 2023 Mar; 24(3):1463-1474. PubMed ID: 36791420 [TBL] [Abstract][Full Text] [Related]