These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 27819339)

  • 1. Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip.
    Peng Q; Zhang Y; Lu L; Shao H; Qin K; Hu X; Xia X
    Sci Rep; 2016 Nov; 6():36473. PubMed ID: 27819339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Wet-Spinning and Post-Spin Stretching Methods Amenable to Recombinant Spider Aciniform Silk.
    Weatherbee-Martin N; Xu L; Hupe A; Kreplak L; Fudge DS; Liu XQ; Rainey JK
    Biomacromolecules; 2016 Aug; 17(8):2737-46. PubMed ID: 27387592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells.
    Lazaris A; Arcidiacono S; Huang Y; Zhou JF; Duguay F; Chretien N; Welsh EA; Soares JW; Karatzas CN
    Science; 2002 Jan; 295(5554):472-6. PubMed ID: 11799236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tough silk fibers prepared in air using a biomimetic microfluidic chip.
    Luo J; Zhang L; Peng Q; Sun M; Zhang Y; Shao H; Hu X
    Int J Biol Macromol; 2014 May; 66():319-24. PubMed ID: 24613677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tensile properties of synthetic pyriform spider silk fibers depend on the number of repetitive units as well as the presence of N- and C-terminal domains.
    Zhu H; Rising A; Johansson J; Zhang X; Lin Y; Zhang L; Yi T; Mi J; Meng Q
    Int J Biol Macromol; 2020 Jul; 154():765-772. PubMed ID: 32169447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of terminal globular domains on the response of recombinant mini-spidroins to fiber spinning triggers.
    Finnigan W; Roberts AD; Ligorio C; Scrutton NS; Breitling R; Blaker JJ; Takano E
    Sci Rep; 2020 Jun; 10(1):10671. PubMed ID: 32606438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forcibly spun dragline silk fibers from web-building spider Trichonephila clavata ensure robustness irrespective of spinning speed and humidity.
    Yazawa K; Sasaki U
    Int J Biol Macromol; 2021 Jan; 168():550-557. PubMed ID: 33333091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-in-One Spider Silk Protein with Combined Mechanical Features in All-Aqueous Spun Fibers.
    Saric M; Scheibel T
    Biomacromolecules; 2023 Apr; 24(4):1744-1750. PubMed ID: 36913547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly mechanism of recombinant spider silk proteins.
    Rammensee S; Slotta U; Scheibel T; Bausch AR
    Proc Natl Acad Sci U S A; 2008 May; 105(18):6590-5. PubMed ID: 18445655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of Biomimetic Artificial Spider Silk Fibers Tuned by PostSpin Bath Incubation.
    Greco G; Francis J; Arndt T; Schmuck B; G Bäcklund F; Barth A; Johansson J; M Pugno N; Rising A
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32708777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers.
    Gnesa E; Hsia Y; Yarger JL; Weber W; Lin-Cereghino J; Lin-Cereghino G; Tang S; Agari K; Vierra C
    Biomacromolecules; 2012 Feb; 13(2):304-12. PubMed ID: 22176138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid Crystalline Granules Align in a Hierarchical Structure To Produce Spider Dragline Microfibrils.
    Lin TY; Masunaga H; Sato R; Malay AD; Toyooka K; Hikima T; Numata K
    Biomacromolecules; 2017 Apr; 18(4):1350-1355. PubMed ID: 28252955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanisms of spider silk.
    Hu X; Vasanthavada K; Kohler K; McNary S; Moore AM; Vierra CA
    Cell Mol Life Sci; 2006 Sep; 63(17):1986-99. PubMed ID: 16819558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Dry-spinning and Characterization of Regenerated Silk Fibroin Fibers.
    Peng Q; Shao H; Hu X; Zhang Y
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28892028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inducing β-sheets formation in synthetic spider silk fibers by aqueous post-spin stretching.
    An B; Hinman MB; Holland GP; Yarger JL; Lewis RV
    Biomacromolecules; 2011 Jun; 12(6):2375-81. PubMed ID: 21574576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Protein-Like Nanogel for Spinning Hierarchically Structured Artificial Spider Silk.
    He W; Qian D; Wang Y; Zhang G; Cheng Y; Hu X; Wen K; Wang M; Liu Z; Zhou X; Zhu M
    Adv Mater; 2022 Jul; 34(27):e2201843. PubMed ID: 35509216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dry-Spinning of Artificial Spider Silk Ribbons From Regenerated Natural Spidroin in an Organic Medium.
    Wang MY; Zhang JP; Chen SL; Qi B; Yao XY; Zhang XH; Li YT; Yang ZH
    Macromol Rapid Commun; 2023 Jun; 44(12):e2300024. PubMed ID: 37078381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tyrosine's Unique Role in the Hierarchical Assembly of Recombinant Spider Silk Proteins: From Spinning Dope to Fibers.
    Stengel D; Saric M; Johnson HR; Schiller T; Diehl J; Chalek K; Onofrei D; Scheibel T; Holland GP
    Biomacromolecules; 2023 Mar; 24(3):1463-1474. PubMed ID: 36791420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward spinning artificial spider silk.
    Rising A; Johansson J
    Nat Chem Biol; 2015 May; 11(5):309-15. PubMed ID: 25885958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Quaternary structure formation by recombinant analogues of spider silk].
    Sokolov OS; Bogush VG; Davydova LI; Polevova SV; Antonov SA; Neretina TV; Klinov DV; Debabov VG; Kirpichnikov MP
    Mol Biol (Mosk); 2010; 44(1):162-9. PubMed ID: 20198870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.