These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27819352)

  • 41. Probing shear-band initiation in metallic glasses.
    Klaumünzer D; Lazarev A; Maass R; Dalla Torre FH; Vinogradov A; Löffler JF
    Phys Rev Lett; 2011 Oct; 107(18):185502. PubMed ID: 22107642
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The atomic-scale nucleation mechanism of NiTi metallic glasses upon isothermal annealing studied via molecular dynamics simulations.
    Li Y; Li J; Liu B
    Phys Chem Chem Phys; 2015 Oct; 17(40):27127-35. PubMed ID: 26414845
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evolution of elastic heterogeneity during aging in metallic glasses.
    Fan Y; Iwashita T; Egami T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062313. PubMed ID: 25019782
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evidence of distributed interstitialcy-like relaxation of the shear modulus due to structural relaxation of metallic glasses.
    Khonik SV; Granato AV; Joncich DM; Pompe A; Khonik VA
    Phys Rev Lett; 2008 Feb; 100(6):065501. PubMed ID: 18352488
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy.
    Liu YH; Wang D; Nakajima K; Zhang W; Hirata A; Nishi T; Inoue A; Chen MW
    Phys Rev Lett; 2011 Mar; 106(12):125504. PubMed ID: 21517325
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unusual fast secondary relaxation in metallic glass.
    Wang Q; Zhang ST; Yang Y; Dong YD; Liu CT; Lu J
    Nat Commun; 2015 Jul; 6():7876. PubMed ID: 26204999
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Superelongation and atomic chain formation in nanosized metallic glass.
    Luo JH; Wu FF; Huang JY; Wang JQ; Mao SX
    Phys Rev Lett; 2010 May; 104(21):215503. PubMed ID: 20867114
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanoscale Structural Evolution and Anomalous Mechanical Response of Nanoglasses by Cryogenic Thermal Cycling.
    Liu WH; Sun BA; Gleiter H; Lan S; Tong Y; Wang XL; Hahn H; Yang Y; Kai JJ; Liu CT
    Nano Lett; 2018 Jul; 18(7):4188-4194. PubMed ID: 29869884
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Low-density to high-density transition in Ce75Al23Si2 metallic glass.
    Zeng QS; Fang YZ; Lou HB; Gong Y; Wang XD; Yang K; Li AG; Yan S; Lathe C; Wu FM; Yu XH; Jiang JZ
    J Phys Condens Matter; 2010 Sep; 22(37):375404. PubMed ID: 21403196
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Testing Effects on Shear Transformation Zone Size of Metallic Glassy Films Under Nanoindentation.
    Ma Y; Song Y; Huang X; Chen Z; Zhang T
    Micromachines (Basel); 2018 Nov; 9(12):. PubMed ID: 30513605
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Origin of intermittent plastic flow and instability of shear band sliding in bulk metallic glasses.
    Sun BA; Pauly S; Hu J; Wang WH; Kühn U; Eckert J
    Phys Rev Lett; 2013 May; 110(22):225501. PubMed ID: 23767733
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Theory of Pressure-Induced Rejuvenation and Strain Hardening in Metallic Glasses.
    Phan AD; Zaccone A; Lam VD; Wakabayashi K
    Phys Rev Lett; 2021 Jan; 126(2):025502. PubMed ID: 33512192
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultra-stiff metallic glasses through bond energy density design.
    Schnabel V; Köhler M; Music D; Bednarcik J; Clegg WJ; Raabe D; Schneider JM
    J Phys Condens Matter; 2017 Jul; 29(26):265502. PubMed ID: 28498109
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reformation Capability of Short-Range Order and Their Medium-Range Connections Regulates Deformability of Bulk Metallic Glasses.
    Li C; Wei Y; Shi X
    Sci Rep; 2015 Jul; 5():12177. PubMed ID: 26178316
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Shear softening and structure in a simulated three-dimensional binary glass.
    Albano F; Falk ML
    J Chem Phys; 2005 Apr; 122(15):154508. PubMed ID: 15945646
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A structural model for metallic glasses.
    Miracle DB
    Nat Mater; 2004 Oct; 3(10):697-702. PubMed ID: 15378050
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural origins of Johari-Goldstein relaxation in a metallic glass.
    Liu YH; Fujita T; Aji DP; Matsuura M; Chen MW
    Nat Commun; 2014; 5():3238. PubMed ID: 24488115
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Unveiling the structural arrangements responsible for the atomic dynamics in metallic glasses during physical aging.
    Giordano VM; Ruta B
    Nat Commun; 2016 Jan; 7():10344. PubMed ID: 26787443
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural homogeneity and mass density of bulk metallic glasses revealed by their rough surfaces and ultra-small angle neutron scattering (USANS).
    Kim MH; Suh JY; Fleury E; Han SG; Hong KT
    Sci Rep; 2018 Aug; 8(1):12986. PubMed ID: 30154498
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Communication: Non-monotonic evolution of dynamical heterogeneity in unfreezing process of metallic glasses.
    Li YZ; Zhao LZ; Wang C; Lu Z; Bai HY; Wang WH
    J Chem Phys; 2015 Jul; 143(4):041104. PubMed ID: 26233099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.