BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 27819479)

  • 1. Diversity of formyltetrahydrofolate synthetase genes in the rumens of roe deer (Capreolus pygargus) and sika deer (Cervus nippon) fed different diets.
    Li Z; Henderson G; Yang Y; Li G
    Can J Microbiol; 2017 Jan; 63(1):11-19. PubMed ID: 27819479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial community composition and fermentation patterns in the rumen of sika deer (Cervus nippon) fed three different diets.
    Li Z; Wright AD; Liu H; Bao K; Zhang T; Wang K; Cui X; Yang F; Zhang Z; Li G
    Microb Ecol; 2015 Feb; 69(2):307-18. PubMed ID: 25252928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presence of novel, potentially homoacetogenic bacteria in the rumen as determined by analysis of formyltetrahydrofolate synthetase sequences from ruminants.
    Henderson G; Naylor GE; Leahy SC; Janssen PH
    Appl Environ Microbiol; 2010 Apr; 76(7):2058-66. PubMed ID: 20118378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular diversity of rumen bacterial communities from tannin-rich and fiber-rich forage fed domestic Sika deer (Cervus nippon) in China.
    Li ZP; Liu HL; Li GY; Bao K; Wang KY; Xu C; Yang YF; Yang FH; Wright AD
    BMC Microbiol; 2013 Jul; 13():151. PubMed ID: 23834656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in the methanogen population exist in sika deer (Cervus nippon) fed different diets in China.
    Li ZP; Liu HL; Jin CA; Cui XZ; Jing Y; Yang FH; Li GY; Wright AD
    Microb Ecol; 2013 Nov; 66(4):879-88. PubMed ID: 24061342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of the Rumen Microbiota of Sika Deer (Cervus nippon) Fed Different Concentrations of Tannin Rich Plants.
    Li Z; Wright AD; Liu H; Fan Z; Yang F; Zhang Z; Li G
    PLoS One; 2015; 10(5):e0123481. PubMed ID: 25955033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacteria and methanogens differ along the gastrointestinal tract of Chinese roe deer (Capreolus pygargus).
    Li Z; Zhang Z; Xu C; Zhao J; Liu H; Fan Z; Yang F; Wright AD; Li G
    PLoS One; 2014; 9(12):e114513. PubMed ID: 25490208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association between diet and rumen microbiota in wild roe deer.
    Wilson R; Østbye K; Angell IL; Rudi K
    FEMS Microbiol Lett; 2019 Mar; 366(6):. PubMed ID: 30915473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous development of methanogens and the correlation with bacteria in the rumen and cecum of sika deer (Cervus nippon) during early life suggest different ecology relevance.
    Li Z; Wang X; Zhang T; Si H; Xu C; Wright AG; Li G
    BMC Microbiol; 2019 Jun; 19(1):129. PubMed ID: 31185894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of bromochloromethane and fumarate on phylogenetic diversity of the formyltetrahydrofolate synthetase gene in bovine rumen.
    Mitsumori M; Matsui H; Tajima K; Shinkai T; Takenaka A; Denman SE; McSweeney CS
    Anim Sci J; 2014 Jan; 85(1):25-31. PubMed ID: 23638678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity of the formyltetrahydrofolate synthetase gene (fhs), a key enzyme for reductive acetogenesis, in the bovine rumen.
    Matsui H; Kojima N; Tajima K
    Biosci Biotechnol Biochem; 2008 Dec; 72(12):3273-6. PubMed ID: 19060412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of tannin-degrading bacteria from the rumen of wild Hokkaido sika deer (Cervus nippon yezoensis).
    Sawabe Y; Yamano H; Koike S; Kobayashi Y
    Anim Sci J; 2024; 95(1):e13918. PubMed ID: 38286762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in methane emission, rumen fermentation, and methanogenic community in response to silage and dry cornstalk diets.
    Chong L; Zhuping Z; Tongjun G; Yongming L; Hongmin D
    J Basic Microbiol; 2014 Jun; 54(6):521-30. PubMed ID: 23696266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corn silage in dairy cow diets to reduce ruminal methanogenesis: effects on the rumen metabolically active microbial communities.
    Lettat A; Hassanat F; Benchaar C
    J Dairy Sci; 2013 Aug; 96(8):5237-48. PubMed ID: 23769352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity of the formyltetrahydrofolate synthetase (FTHFS) gene in the proximal and mid ostrich colon.
    Matsui H; Yoneda S; Ban-Tokuda T; Wakita M
    Curr Microbiol; 2011 Jan; 62(1):1-6. PubMed ID: 20458481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ruminal Methanogen Community in Dairy Cows Fed Agricultural Residues of Corn Stover, Rapeseed, and Cottonseed Meals.
    Wang P; Zhao S; Wang X; Zhang Y; Zheng N; Wang J
    J Agric Food Chem; 2016 Jul; 64(27):5439-45. PubMed ID: 27322573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas and short-chain fatty acid production from feeds commonly fed to red deer (Cervus elaphus L.) and incubated with rumen inoculum from red deer and sheep.
    Lavrenčič A; Veternik D
    J Anim Physiol Anim Nutr (Berl); 2018 Oct; 102(5):1146-1153. PubMed ID: 29978922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of rumen microbiome in sika deer (Cervus nippon yakushimae) from unique subtropical ecosystem in Yakushima Island, Japan.
    Eto M; Yahara T; Kuroiwa A; Shioya K; Flores GE; Hamamura N
    Sci Rep; 2022 Dec; 12(1):21623. PubMed ID: 36517661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional gene analysis suggests different acetogen populations in the bovine rumen and tammar wallaby forestomach.
    Gagen EJ; Denman SE; Padmanabha J; Zadbuke S; Al Jassim R; Morrison M; McSweeney CS
    Appl Environ Microbiol; 2010 Dec; 76(23):7785-95. PubMed ID: 20889794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lower dietary concentrate level increases bacterial diversity in the rumen of Cervus elaphus yarkandensis.
    Qian W; Ao W; Hui X; Wu J
    Can J Microbiol; 2018 Jul; 64(7):501-509. PubMed ID: 29562140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.