These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 27819801)

  • 1. High-efficiency piezoelectric micro harvester for collecting low-frequency mechanical energy.
    Li X; Song J; Feng S; Xie X; Li Z; Wang L; Pu Y; Soh AK; Shen J; Lu W; Liu S
    Nanotechnology; 2016 Dec; 27(48):485402. PubMed ID: 27819801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.
    Wang P; Du H
    Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers.
    Koven R; Mills M; Gale R; Aksak B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1735-1743. PubMed ID: 28816659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and Characterization of the Li-Doped ZnO Thin Films Piezoelectric Energy Harvester with Multi-Resonant Frequencies.
    Zhao X; Li S; Ai C; Liu H; Wen D
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30917569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact-Driven Energy Harvesting: Piezoelectric Versus Triboelectric Energy Harvesters.
    Thainiramit P; Yingyong P; Isarakorn D
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An enhanced low-frequency vibration ZnO nanorod-based tuning fork piezoelectric nanogenerator.
    Deng W; Jin L; Chen Y; Chu W; Zhang B; Sun H; Xiong D; Lv Z; Zhu M; Yang W
    Nanoscale; 2018 Jan; 10(2):843-847. PubMed ID: 29261199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible High-Performance Lead-Free Na0.47K0.47Li0.06NbO3 Microcube-Structure-Based Piezoelectric Energy Harvester.
    Gupta MK; Kim SW; Kumar B
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1766-73. PubMed ID: 26735739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Magnetically Coupled Piezoelectric-Electromagnetic Low-Frequency Multidirection Hybrid Energy Harvester.
    Zhu Y; Zhang Z; Zhang P; Tan Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Low Frequency Vibration Energy Harvester Using ZnO Nanowires on Elastic Interdigitated Electrodes.
    Yoon BR; Park JH; Lee SK
    J Nanosci Nanotechnol; 2019 Jan; 19(1):66-72. PubMed ID: 30327003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear-Mode-Based Cantilever Driving Low-Frequency Piezoelectric Energy Harvester Using 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3.
    Zeng Z; Ren B; Gai L; Zhao X; Luo H; Wang D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Aug; 63(8):1192-7. PubMed ID: 27244735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Powered Synchronized Switching Interface Circuit for Piezoelectric Footstep Energy Harvesting.
    Ben Ammar M; Sahnoun S; Fakhfakh A; Viehweger C; Kanoun O
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of a Piezoelectric Energy Harvester and Design of a Charge Pump Converter for CMOS-MEMS Monolithic Integration.
    Duque M; Leon-Salguero E; Sacristán J; Esteve J; Murillo G
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31010076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A piezoelectric micro generator worked at low frequency and high acceleration based on PZT and phosphor bronze bonding.
    Tang G; Yang B; Hou C; Li G; Liu J; Chen X; Yang C
    Sci Rep; 2016 Dec; 6():38798. PubMed ID: 27929139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibration energy harvester with sustainable power based on a single-crystal piezoelectric cantilever array.
    Kim M; Lee SK; Ham YH; Yang YS; Kwon JK; Kwon KH
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6283-6. PubMed ID: 22962737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Frequency Up-Converted Hybrid Energy Harvester Using Transverse Impact-Driven Piezoelectric Bimorph for Human-Limb Motion.
    Halim MA; Kabir MH; Cho H; Park JY
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31618939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectric and piezoelectric properties of CeO2-added nonstoichiometric (Na0.5K0.5)0.97(Nb0.96Sb0.04)O3 ceramics for piezoelectric energy harvesting device applications.
    Oh Y; Noh J; Yoo J; Kang J; Hwang L; Hong J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Sep; 58(9):1860-6. PubMed ID: 21937318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On Mechanical and Electrical Coupling Determination at Piezoelectric Harvester by Customized Algorithm Modeling and Measurable Properties.
    Perez-Alfaro I; Gil-Hernandez D; Murillo N; Bernal C
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit.
    Yu H; Zhou J; Deng L; Wen Z
    Sensors (Basel); 2014 Feb; 14(2):3323-41. PubMed ID: 24556670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Low-Frequency MEMS Piezoelectric Energy Harvesting System Based on Frequency Up-Conversion Mechanism.
    Huang M; Hou C; Li Y; Liu H; Wang F; Chen T; Yang Z; Tang G; Sun L
    Micromachines (Basel); 2019 Sep; 10(10):. PubMed ID: 31554221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Note: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams.
    Yang A; Li P; Wen Y; Lu C; Peng X; He W; Zhang J; Wang D; Yang F
    Rev Sci Instrum; 2014 Jun; 85(6):066103. PubMed ID: 24985867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.