BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27820651)

  • 1. Using artificial neural networks to select upright cowpea (Vigna unguiculata) genotypes with high productivity and phenotypic stability.
    Barroso LM; Teodoro PE; Nascimento M; Torres FE; Nascimento AC; Azevedo CF; Teixeira FR
    Genet Mol Res; 2016 Nov; 15(4):. PubMed ID: 27820651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous selection for cowpea (Vigna unguiculata L.) genotypes with adaptability and yield stability using mixed models.
    Torres FE; Teodoro PE; Rodrigues EV; Santos A; Corrêa AM; Ceccon G
    Genet Mol Res; 2016 Apr; 15(2):. PubMed ID: 27173301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian approach increases accuracy when selecting cowpea genotypes with high adaptability and phenotypic stability.
    Barroso LM; Teodoro PE; Nascimento M; Torres FE; Dos Santos A; Corrêa AM; Sagrilo E; Corrêa CC; Silva FA; Ceccon G
    Genet Mol Res; 2016 Mar; 15(1):15017625. PubMed ID: 26985961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial intelligence in the selection of common bean genotypes with high phenotypic stability.
    Corrêa AM; Teodoro PE; Gonçalves MC; Barroso LM; Nascimento M; Santos A; Torres FE
    Genet Mol Res; 2016 Apr; 15(2):. PubMed ID: 27173300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biplot analysis of phenotypic stability in upland cotton genotypes in Mato Grosso.
    Farias FJ; Carvalho LP; Silva Filho JL; Teodoro PE
    Genet Mol Res; 2016 May; 15(2):. PubMed ID: 27323051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diallelic analysis to obtain cowpea (Vigna unguiculata L. Walp.) populations tolerant to water deficit.
    Rodrigues EV; Damasceno-Silva KJ; Rocha MM; Bastos EA
    Genet Mol Res; 2016 May; 15(2):. PubMed ID: 27323025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] germplasm collections using phenotypic traits and SNP markers.
    Nkhoma N; Shimelis H; Laing MD; Shayanowako A; Mathew I
    BMC Genet; 2020 Sep; 21(1):110. PubMed ID: 32948123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptability and phenotypic stability of common bean genotypes through Bayesian inference.
    Corrêa AM; Teodoro PE; Gonçalves MC; Barroso LM; Nascimento M; Santos A; Torres FE
    Genet Mol Res; 2016 Apr; 15(2):. PubMed ID: 27173270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurements of experimental precision for trials with cowpea (Vigna unguiculata L. Walp.) genotypes.
    Teodoro PE; Torres FE; Santos AD; Corrêa AM; Nascimento M; Barroso LM; Ceccon G
    Genet Mol Res; 2016 May; 15(2):. PubMed ID: 27173351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. European cowpea landraces for a more sustainable agriculture system and novel foods.
    Carvalho M; Bebeli PJ; Pereira G; Castro I; Egea-Gilabert C; Matos M; Lazaridi E; Duarte I; Lino-Neto T; Ntatsi G; Rodrigues M; Savvas D; Rosa E; Carnide V
    J Sci Food Agric; 2017 Oct; 97(13):4399-4407. PubMed ID: 28419490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening of cowpea (Vigna unguiculata (L.) Walp.) genotypes for waterlogging tolerance using morpho-physiological traits at early growth stage.
    Olorunwa OJ; Adhikari B; Shi A; Barickman TC
    Plant Sci; 2022 Feb; 315():111136. PubMed ID: 35067306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotypic diversity and evaluation of fresh pods of cowpea landraces from Southern Europe.
    Lazaridi E; Ntatsi G; Fernández JA; Karapanos I; Carnide V; Savvas D; Bebeli PJ
    J Sci Food Agric; 2017 Oct; 97(13):4326-4333. PubMed ID: 28182289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genotype by environment interaction and yield stability of cowpea (
    Goa Y; Mohammed H; Worku W; Urage E
    Heliyon; 2022 Mar; 8(3):e09013. PubMed ID: 35309407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection of common bean (Phaseolus vulgaris L.) genotypes using a genotype plus genotype x environment interaction biplot.
    Corrêa AM; Teodoro PE; Gonçalves MC; Santos A; Torres FE
    Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27525915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of environmental conditions and seed physico-chemical characteristics on the resistance of cowpea genotypes to
    Kosini D; Nukenine EN; Saidou C; Noubissié JT; Dolinassou S
    Bull Entomol Res; 2019 Oct; 109(5):595-603. PubMed ID: 30572967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic parameters and path analysis in cowpea genotypes grown in the Cerrado/Pantanal ecotone.
    Lopes KV; Teodoro PE; Silva FA; Silva MT; Fernandes RL; Rodrigues TC; Faria TC; Corrêa AM
    Genet Mol Res; 2017 May; 16(2):. PubMed ID: 28525655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diallel Analysis and Heritability of Grain Yield, Yield Components, and Maturity Traits in Cowpea (
    Owusu EY; Mohammed H; Manigben KA; Adjebeng-Danquah J; Kusi F; Karikari B; Sie EK
    ScientificWorldJournal; 2020; 2020():9390287. PubMed ID: 32802007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biplot analysis of strawberry genotypes recommended for the State of Espírito Santo.
    Costa AF; Teodoro PE; Bhering LL; Leal NR; Tardin FD; Daher RF
    Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27706604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genotype evaluation of cowpea seeds (Vigna unguiculata) using
    Alves Filho EG; Silva LM; Teofilo EM; Larsen FH; de Brito ES
    Food Res Int; 2017 Jan; 91():140-147. PubMed ID: 28290318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AMMI and GGE biplot analysis of genotype by environment interaction and yield stability in early maturing cowpea [
    Kindie Y; Tesso B; Amsalu B
    Plant Environ Interact; 2022 Feb; 3(1):1-9. PubMed ID: 37283694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.