These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 27820651)
1. Using artificial neural networks to select upright cowpea (Vigna unguiculata) genotypes with high productivity and phenotypic stability. Barroso LM; Teodoro PE; Nascimento M; Torres FE; Nascimento AC; Azevedo CF; Teixeira FR Genet Mol Res; 2016 Nov; 15(4):. PubMed ID: 27820651 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous selection for cowpea (Vigna unguiculata L.) genotypes with adaptability and yield stability using mixed models. Torres FE; Teodoro PE; Rodrigues EV; Santos A; Corrêa AM; Ceccon G Genet Mol Res; 2016 Apr; 15(2):. PubMed ID: 27173301 [TBL] [Abstract][Full Text] [Related]
3. Bayesian approach increases accuracy when selecting cowpea genotypes with high adaptability and phenotypic stability. Barroso LM; Teodoro PE; Nascimento M; Torres FE; Dos Santos A; Corrêa AM; Sagrilo E; Corrêa CC; Silva FA; Ceccon G Genet Mol Res; 2016 Mar; 15(1):15017625. PubMed ID: 26985961 [TBL] [Abstract][Full Text] [Related]
4. Artificial intelligence in the selection of common bean genotypes with high phenotypic stability. Corrêa AM; Teodoro PE; Gonçalves MC; Barroso LM; Nascimento M; Santos A; Torres FE Genet Mol Res; 2016 Apr; 15(2):. PubMed ID: 27173300 [TBL] [Abstract][Full Text] [Related]
5. Biplot analysis of phenotypic stability in upland cotton genotypes in Mato Grosso. Farias FJ; Carvalho LP; Silva Filho JL; Teodoro PE Genet Mol Res; 2016 May; 15(2):. PubMed ID: 27323051 [TBL] [Abstract][Full Text] [Related]
6. Diallelic analysis to obtain cowpea (Vigna unguiculata L. Walp.) populations tolerant to water deficit. Rodrigues EV; Damasceno-Silva KJ; Rocha MM; Bastos EA Genet Mol Res; 2016 May; 15(2):. PubMed ID: 27323025 [TBL] [Abstract][Full Text] [Related]
7. Assessing the genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] germplasm collections using phenotypic traits and SNP markers. Nkhoma N; Shimelis H; Laing MD; Shayanowako A; Mathew I BMC Genet; 2020 Sep; 21(1):110. PubMed ID: 32948123 [TBL] [Abstract][Full Text] [Related]
8. Adaptability and phenotypic stability of common bean genotypes through Bayesian inference. Corrêa AM; Teodoro PE; Gonçalves MC; Barroso LM; Nascimento M; Santos A; Torres FE Genet Mol Res; 2016 Apr; 15(2):. PubMed ID: 27173270 [TBL] [Abstract][Full Text] [Related]
9. Measurements of experimental precision for trials with cowpea (Vigna unguiculata L. Walp.) genotypes. Teodoro PE; Torres FE; Santos AD; Corrêa AM; Nascimento M; Barroso LM; Ceccon G Genet Mol Res; 2016 May; 15(2):. PubMed ID: 27173351 [TBL] [Abstract][Full Text] [Related]
10. European cowpea landraces for a more sustainable agriculture system and novel foods. Carvalho M; Bebeli PJ; Pereira G; Castro I; Egea-Gilabert C; Matos M; Lazaridi E; Duarte I; Lino-Neto T; Ntatsi G; Rodrigues M; Savvas D; Rosa E; Carnide V J Sci Food Agric; 2017 Oct; 97(13):4399-4407. PubMed ID: 28419490 [TBL] [Abstract][Full Text] [Related]
11. Screening of cowpea (Vigna unguiculata (L.) Walp.) genotypes for waterlogging tolerance using morpho-physiological traits at early growth stage. Olorunwa OJ; Adhikari B; Shi A; Barickman TC Plant Sci; 2022 Feb; 315():111136. PubMed ID: 35067306 [TBL] [Abstract][Full Text] [Related]
12. Phenotypic diversity and evaluation of fresh pods of cowpea landraces from Southern Europe. Lazaridi E; Ntatsi G; Fernández JA; Karapanos I; Carnide V; Savvas D; Bebeli PJ J Sci Food Agric; 2017 Oct; 97(13):4326-4333. PubMed ID: 28182289 [TBL] [Abstract][Full Text] [Related]
13. Genotype by environment interaction and yield stability of cowpea ( Goa Y; Mohammed H; Worku W; Urage E Heliyon; 2022 Mar; 8(3):e09013. PubMed ID: 35309407 [TBL] [Abstract][Full Text] [Related]
14. Selection of common bean (Phaseolus vulgaris L.) genotypes using a genotype plus genotype x environment interaction biplot. Corrêa AM; Teodoro PE; Gonçalves MC; Santos A; Torres FE Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27525915 [TBL] [Abstract][Full Text] [Related]
15. Impact of environmental conditions and seed physico-chemical characteristics on the resistance of cowpea genotypes to Kosini D; Nukenine EN; Saidou C; Noubissié JT; Dolinassou S Bull Entomol Res; 2019 Oct; 109(5):595-603. PubMed ID: 30572967 [TBL] [Abstract][Full Text] [Related]
16. Genetic parameters and path analysis in cowpea genotypes grown in the Cerrado/Pantanal ecotone. Lopes KV; Teodoro PE; Silva FA; Silva MT; Fernandes RL; Rodrigues TC; Faria TC; Corrêa AM Genet Mol Res; 2017 May; 16(2):. PubMed ID: 28525655 [TBL] [Abstract][Full Text] [Related]
17. Diallel Analysis and Heritability of Grain Yield, Yield Components, and Maturity Traits in Cowpea ( Owusu EY; Mohammed H; Manigben KA; Adjebeng-Danquah J; Kusi F; Karikari B; Sie EK ScientificWorldJournal; 2020; 2020():9390287. PubMed ID: 32802007 [TBL] [Abstract][Full Text] [Related]
18. Biplot analysis of strawberry genotypes recommended for the State of Espírito Santo. Costa AF; Teodoro PE; Bhering LL; Leal NR; Tardin FD; Daher RF Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27706604 [TBL] [Abstract][Full Text] [Related]
19. Genotype evaluation of cowpea seeds (Vigna unguiculata) using Alves Filho EG; Silva LM; Teofilo EM; Larsen FH; de Brito ES Food Res Int; 2017 Jan; 91():140-147. PubMed ID: 28290318 [TBL] [Abstract][Full Text] [Related]
20. AMMI and GGE biplot analysis of genotype by environment interaction and yield stability in early maturing cowpea [ Kindie Y; Tesso B; Amsalu B Plant Environ Interact; 2022 Feb; 3(1):1-9. PubMed ID: 37283694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]