BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 27820808)

  • 1. Oxidative guanine base damage regulates human telomerase activity.
    Fouquerel E; Lormand J; Bose A; Lee HT; Kim GS; Li J; Sobol RW; Freudenthal BD; Myong S; Opresko PL
    Nat Struct Mol Biol; 2016 Dec; 23(12):1092-1100. PubMed ID: 27820808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PRDX1 and MTH1 cooperate to prevent ROS-mediated inhibition of telomerase.
    Ahmed W; Lingner J
    Genes Dev; 2018 May; 32(9-10):658-669. PubMed ID: 29773556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms by which oxidative DNA damage promotes telomerase activity.
    Lee HT; Bose A; Lee CY; Opresko PL; Myong S
    Nucleic Acids Res; 2017 Nov; 45(20):11752-11765. PubMed ID: 28981887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Position-Dependent Effect of Guanine Base Damage and Mutations on Telomeric G-Quadruplex and Telomerase Extension.
    Lee HT; Sanford S; Paul T; Choe J; Bose A; Opresko PL; Myong S
    Biochemistry; 2020 Jul; 59(28):2627-2639. PubMed ID: 32578995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-specific probing of oxidative reactivity and telomerase function using 7,8-dihydro-8-oxoguanine in telomeric DNA.
    Szalai VA; Singer MJ; Thorp HH
    J Am Chem Soc; 2002 Feb; 124(8):1625-31. PubMed ID: 11853436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of telomerase inhibition by oxidized and therapeutic dNTPs.
    Sanford SL; Welfer GA; Freudenthal BD; Opresko PL
    Nat Commun; 2020 Oct; 11(1):5288. PubMed ID: 33082336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue formation and tissue engineering through host cell recruitment or a potential injectable cell-based biocomposite with replicative potential: Molecular mechanisms controlling cellular senescence and the involvement of controlled transient telomerase activation therapies.
    Babizhayev MA; Yegorov YE
    J Biomed Mater Res A; 2015 Dec; 103(12):3993-4023. PubMed ID: 26034007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro.
    Zaug AJ; Podell ER; Cech TR
    Proc Natl Acad Sci U S A; 2005 Aug; 102(31):10864-9. PubMed ID: 16043710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of 8-
    Castillo-González C; Barbero Barcenilla B; Young PG; Hall E; Shippen DE
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast telomerase subunit Est1p has guanine quadruplex-promoting activity that is required for telomere elongation.
    Zhang ML; Tong XJ; Fu XH; Zhou BO; Wang J; Liao XH; Li QJ; Shen N; Ding J; Zhou JQ
    Nat Struct Mol Biol; 2010 Feb; 17(2):202-9. PubMed ID: 20098422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted DNA damage at individual telomeres disrupts their integrity and triggers cell death.
    Sun L; Tan R; Xu J; LaFace J; Gao Y; Xiao Y; Attar M; Neumann C; Li GM; Su B; Liu Y; Nakajima S; Levine AS; Lan L
    Nucleic Acids Res; 2015 Jul; 43(13):6334-47. PubMed ID: 26082495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An evaluation cascade for G-quadruplex telomere targeting agents in human cancer cells.
    Gunaratnam M; Neidle S
    Methods Mol Biol; 2010; 613():303-13. PubMed ID: 19997892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function.
    Burger AM; Dai F; Schultes CM; Reszka AP; Moore MJ; Double JA; Neidle S
    Cancer Res; 2005 Feb; 65(4):1489-96. PubMed ID: 15735037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined treatment with emodin and a telomerase inhibitor induces significant telomere damage/dysfunction and cell death.
    Liu R; Liu J; Wang S; Wang Y; Zhang T; Liu Y; Geng X; Wang F
    Cell Death Dis; 2019 Jul; 10(7):527. PubMed ID: 31296842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [G-quadruplex DNA: myth or reality?].
    Riou JF; Gomez D; Lemarteleur T; Trentesaux C
    Bull Cancer; 2003 Apr; 90(4):305-13. PubMed ID: 12801813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted and Persistent 8-Oxoguanine Base Damage at Telomeres Promotes Telomere Loss and Crisis.
    Fouquerel E; Barnes RP; Uttam S; Watkins SC; Bruchez MP; Opresko PL
    Mol Cell; 2019 Jul; 75(1):117-130.e6. PubMed ID: 31101499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Telomere shortening and cell senescence induced by perylene derivatives in A549 human lung cancer cells.
    Taka T; Huang L; Wongnoppavich A; Tam-Chang SW; Lee TR; Tuntiwechapikul W
    Bioorg Med Chem; 2013 Feb; 21(4):883-90. PubMed ID: 23321015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative DNA damage in Barrett mucosa: correlation with telomeric dysfunction and p53 mutation.
    Cardin R; Piciocchi M; Tieppo C; Maddalo G; Zaninotto G; Mescoli C; Rugge M; Farinati F
    Ann Surg Oncol; 2013 Dec; 20 Suppl 3():S583-9. PubMed ID: 23744553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA adducts of antitumor cisplatin preclude telomeric sequences from forming G quadruplexes.
    Heringova P; Kasparkova J; Brabec V
    J Biol Inorg Chem; 2009 Aug; 14(6):959-68. PubMed ID: 19390878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Telomere G-Quadruplex as a Potential Target to Accelerate Telomere Shortening by Expanding the Incomplete End-Replication of Telomere DNA.
    Tan Z; Tang J; Kan ZY; Hao YH
    Curr Top Med Chem; 2015; 15(19):1940-6. PubMed ID: 25980416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.