BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 27820860)

  • 1. Structure and Calcium Binding Properties of a Neuronal Calcium-Myristoyl Switch Protein, Visinin-Like Protein 3.
    Li C; Lim S; Braunewell KH; Ames JB
    PLoS One; 2016; 11(11):e0165921. PubMed ID: 27820860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural analysis of Mg2+ and Ca2+ binding, myristoylation, and dimerization of the neuronal calcium sensor and visinin-like protein 1 (VILIP-1).
    Li C; Pan W; Braunewell KH; Ames JB
    J Biol Chem; 2011 Feb; 286(8):6354-66. PubMed ID: 21169352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and calcium-binding studies of a recoverin mutant (E85Q) in an allosteric intermediate state.
    Ames JB; Hamasaki N; Molchanova T
    Biochemistry; 2002 May; 41(18):5776-87. PubMed ID: 11980481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino-terminal myristoylation induces cooperative calcium binding to recoverin.
    Ames JB; Porumb T; Tanaka T; Ikura M; Stryer L
    J Biol Chem; 1995 Mar; 270(9):4526-33. PubMed ID: 7876221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible translocation and activity-dependent localization of the calcium-myristoyl switch protein VILIP-1 to different membrane compartments in living hippocampal neurons.
    Spilker C; Dresbach T; Braunewell KH
    J Neurosci; 2002 Sep; 22(17):7331-9. PubMed ID: 12196554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and calcium-binding properties of Frq1, a novel calcium sensor in the yeast Saccharomyces cerevisiae.
    Ames JB; Hendricks KB; Strahl T; Huttner IG; Hamasaki N; Thorner J
    Biochemistry; 2000 Oct; 39(40):12149-61. PubMed ID: 11015193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-myristoyl switch, subcellular localization, and calcium-dependent translocation of the neuronal calcium sensor protein VILIP-3, and comparison with VILIP-1 in hippocampal neurons.
    Spilker C; Braunewell KH
    Mol Cell Neurosci; 2003 Nov; 24(3):766-78. PubMed ID: 14664824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium and membrane binding properties of bovine neurocalcin delta expressed in Escherichia coli.
    Ladant D
    J Biol Chem; 1995 Feb; 270(7):3179-85. PubMed ID: 7852401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium-myristoyl protein switch.
    Zozulya S; Stryer L
    Proc Natl Acad Sci U S A; 1992 Dec; 89(23):11569-73. PubMed ID: 1454850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary structure of myristoylated recoverin determined by three-dimensional heteronuclear NMR: implications for the calcium-myristoyl switch.
    Ames JB; Tanaka T; Stryer L; Ikura M
    Biochemistry; 1994 Sep; 33(35):10743-53. PubMed ID: 8075075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fission yeast homolog of neuronal calcium sensor-1 (Ncs1p) regulates sporulation and confers calcium tolerance.
    Hamasaki-Katagiri N; Molchanova T; Takeda K; Ames JB
    J Biol Chem; 2004 Mar; 279(13):12744-54. PubMed ID: 14722091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential regulation of CaV2.1 channels by calcium-binding protein 1 and visinin-like protein-2 requires N-terminal myristoylation.
    Few AP; Lautermilch NJ; Westenbroek RE; Scheuer T; Catterall WA
    J Neurosci; 2005 Jul; 25(30):7071-80. PubMed ID: 16049184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear magnetic resonance evidence for Ca(2+)-induced extrusion of the myristoyl group of recoverin.
    Ames JB; Tanaka T; Ikura M; Stryer L
    J Biol Chem; 1995 Dec; 270(52):30909-13. PubMed ID: 8537345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium-dependent solvation of the myristoyl group of recoverin.
    Hughes RE; Brzovic PS; Klevit RE; Hurley JB
    Biochemistry; 1995 Sep; 34(36):11410-6. PubMed ID: 7547868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific interaction to PIP2 increases the kinetic rate of membrane binding of VILIPs, a subfamily of Neuronal Calcium Sensors (NCS) proteins.
    Rebaud S; Wang CK; Sarkis J; Mason L; Simon A; Blum LJ; Hofmann A; Girard-Egrot AP
    Biochim Biophys Acta; 2014 Oct; 1838(10):2698-707. PubMed ID: 25019684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The neuronal calcium-sensor protein VILIP modulates cyclic AMP accumulation in stably transfected C6 glioma cells: amino-terminal myristoylation determines functional activity.
    Braunewell KH; Spilker C; Behnisch T; Gundelfinger ED
    J Neurochem; 1997 May; 68(5):2129-39. PubMed ID: 9109541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nicotine-induced Ca2+-myristoyl switch of neuronal Ca2+ sensor VILIP-1 in hippocampal neurons: a possible crosstalk mechanism for nicotinic receptors.
    Zhao C; Anand R; Braunewell KH
    Cell Mol Neurobiol; 2009 Mar; 29(2):273-86. PubMed ID: 18925431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional analysis of calcium-binding EF-hand motifs of visinin-like protein-1.
    Lin L; Braunewell KH; Gundelfinger ED; Anand R
    Biochem Biophys Res Commun; 2002 Aug; 296(4):827-32. PubMed ID: 12200122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of residues that determine the absence of a Ca(2+)/myristoyl switch in neuronal calcium sensor-1.
    O'Callaghan DW; Burgoyne RD
    J Biol Chem; 2004 Apr; 279(14):14347-54. PubMed ID: 14726528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state.
    Tanaka T; Ames JB; Harvey TS; Stryer L; Ikura M
    Nature; 1995 Aug; 376(6539):444-7. PubMed ID: 7630423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.