BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 27820860)

  • 21. Effects of Ca2+, Mg2+, and myristoylation on guanylyl cyclase activating protein 1 structure and stability.
    Lim S; Peshenko I; Dizhoor A; Ames JB
    Biochemistry; 2009 Feb; 48(5):850-62. PubMed ID: 19143494
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ca2+-myristoyl switch and membrane binding of chemically acylated neurocalcins.
    Béven L; Adenier H; Kichenama R; Homand J; Redeker V; Le Caer JP; Ladant D; Chopineau J
    Biochemistry; 2001 Jul; 40(27):8152-60. PubMed ID: 11434785
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Core mutations that promote the calcium-induced allosteric transition of bovine recoverin.
    Baldwin AN; Ames JB
    Biochemistry; 1998 Dec; 37(50):17408-19. PubMed ID: 9860856
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of N-terminal myristoylation on the Ca2+-dependent conformational transition in recoverin.
    Weiergräber OH; Senin II; Philippov PP; Granzin J; Koch KW
    J Biol Chem; 2003 Jun; 278(25):22972-9. PubMed ID: 12686556
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calcium- and myristoyl-dependent properties of guanylate cyclase-activating protein-1 and protein-2.
    Hwang JY; Koch KW
    Biochemistry; 2002 Oct; 41(43):13021-8. PubMed ID: 12390029
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calcium- and myristoyl-dependent subcellular localization of the neuronal calcium-binding protein VILIP in transfected PC12 cells.
    Spilker C; Gundelfinger ED; Braunewell KH
    Neurosci Lett; 1997 Apr; 225(2):126-8. PubMed ID: 9147390
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measurement of membrane binding between recoverin, a calcium-myristoyl switch protein, and lipid bilayers by AFM-based force spectroscopy.
    Desmeules P; Grandbois M; Bondarenko VA; Yamazaki A; Salesse C
    Biophys J; 2002 Jun; 82(6):3343-50. PubMed ID: 12023256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cation binding and conformational changes in VILIP and NCS-1, two neuron-specific calcium-binding proteins.
    Cox JA; Durussel I; Comte M; Nef S; Nef P; Lenz SE; Gundelfinger ED
    J Biol Chem; 1994 Dec; 269(52):32807-13. PubMed ID: 7806504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure, topology, and dynamics of myristoylated recoverin bound to phospholipid bilayers.
    Valentine KG; Mesleh MF; Opella SJ; Ikura M; Ames JB
    Biochemistry; 2003 Jun; 42(21):6333-40. PubMed ID: 12767213
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of VILIP-1 and VILIP-3 binding to phospholipid monolayers.
    Rebaud S; Simon A; Wang CK; Mason L; Blum L; Hofmann A; Girard-Egrot A
    PLoS One; 2014; 9(4):e93948. PubMed ID: 24699524
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular mechanics of calcium-myristoyl switches.
    Ames JB; Ishima R; Tanaka T; Gordon JI; Stryer L; Ikura M
    Nature; 1997 Sep; 389(6647):198-202. PubMed ID: 9296500
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Portrait of a myristoyl switch protein.
    Ames JB; Tanaka T; Stryer L; Ikura M
    Curr Opin Struct Biol; 1996 Aug; 6(4):432-8. PubMed ID: 8794166
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional restoration of the Ca2+-myristoyl switch in a recoverin mutant.
    Senin II; Vaganova SA; Weiergräber OH; Ergorov NS; Philippov PP; Koch KW
    J Mol Biol; 2003 Jul; 330(2):409-18. PubMed ID: 12823978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformational dynamics of recoverin's Ca2+-myristoyl switch probed by 15N NMR relaxation dispersion and chemical shift analysis.
    Xu X; Ishima R; Ames JB
    Proteins; 2011 Jun; 79(6):1910-22. PubMed ID: 21465563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visinin-like proteins (VSNLs): interaction partners and emerging functions in signal transduction of a subfamily of neuronal Ca2+ -sensor proteins.
    Braunewell KH; Klein-Szanto AJ
    Cell Tissue Res; 2009 Feb; 335(2):301-16. PubMed ID: 18989702
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ca2+-myristoyl switch in the neuronal calcium sensor recoverin requires different functions of Ca2+-binding sites.
    Senin II; Fischer T; Komolov KE; Zinchenko DV; Philippov PP; Koch KW
    J Biol Chem; 2002 Dec; 277(52):50365-72. PubMed ID: 12393897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential use of myristoyl groups on neuronal calcium sensor proteins as a determinant of spatio-temporal aspects of Ca2+ signal transduction.
    O'Callaghan DW; Ivings L; Weiss JL; Ashby MC; Tepikin AV; Burgoyne RD
    J Biol Chem; 2002 Apr; 277(16):14227-37. PubMed ID: 11836243
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The neuronal EF-hand calcium-binding protein visinin-like protein-3 is expressed in cerebellar Purkinje cells and shows a calcium-dependent membrane association.
    Spilker C; Richter K; Smalla KH; Manahan-Vaughan D; Gundelfinger ED; Braunewell KH
    Neuroscience; 2000; 96(1):121-9. PubMed ID: 10683417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How can Ca2+ selectively activate recoverin in the presence of Mg2+? Surface plasmon resonance and FT-IR spectroscopic studies.
    Ozawa T; Fukuda M; Nara M; Nakamura A; Komine Y; Kohama K; Umezawa Y
    Biochemistry; 2000 Nov; 39(47):14495-503. PubMed ID: 11087403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The thermal stability of recoverin depends on calcium binding and its myristoyl moiety as revealed by infrared spectroscopy.
    Potvin-Fournier K; Lefèvre T; Picard-Lafond A; Valois-Paillard G; Cantin L; Salesse C; Auger M
    Biochemistry; 2014 Jan; 53(1):48-56. PubMed ID: 24359287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.