These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 2782091)

  • 61. Bilateral deficit in maximal force production.
    Škarabot J; Cronin N; Strojnik V; Avela J
    Eur J Appl Physiol; 2016 Dec; 116(11-12):2057-2084. PubMed ID: 27582260
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Correct, fake and absent pre-information does not affect the occurrence and magnitude of the bilateral force deficit.
    Donath L; Siebert T; Faude O; Puta C
    J Sports Sci Med; 2014 May; 13(2):439-43. PubMed ID: 24790502
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Bilateral deficit in explosive force production is not caused by changes in agonist neural drive.
    Buckthorpe MW; Pain MT; Folland JP
    PLoS One; 2013; 8(3):e57549. PubMed ID: 23472091
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Comparison of maximal unilateral versus bilateral voluntary contraction force.
    Matkowski B; Martin A; Lepers R
    Eur J Appl Physiol; 2011 Aug; 111(8):1571-8. PubMed ID: 21188415
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Bilateral deficit phenomenon and the role of antagonist muscle activity during maximal isometric knee extensions in young, athletic men.
    Kuruganti U; Murphy T; Pardy T
    Eur J Appl Physiol; 2011 Jul; 111(7):1533-9. PubMed ID: 21127894
    [TBL] [Abstract][Full Text] [Related]  

  • 66. In-season strength maintenance training increases well-trained cyclists' performance.
    Rønnestad BR; Hansen EA; Raastad T
    Eur J Appl Physiol; 2010 Dec; 110(6):1269-82. PubMed ID: 20799042
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effect of heavy strength training on thigh muscle cross-sectional area, performance determinants, and performance in well-trained cyclists.
    Rønnestad BR; Hansen EA; Raastad T
    Eur J Appl Physiol; 2010 Mar; 108(5):965-75. PubMed ID: 19960350
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Upper and lower limb muscle activation is bidirectionally and ipsilaterally coupled.
    Huang HJ; Ferris DP
    Med Sci Sports Exerc; 2009 Sep; 41(9):1778-89. PubMed ID: 19657291
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Lower limb force production and bilateral force asymmetries are based on sense of effort.
    Simon AM; Ferris DP
    Exp Brain Res; 2008 May; 187(1):129-38. PubMed ID: 18251017
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Bilateral deficit expressions and myoelectric signal activity during submaximal and maximal isometric knee extensions in young, athletic males.
    Kuruganti U; Murphy T
    Eur J Appl Physiol; 2008 Apr; 102(6):721-6. PubMed ID: 18097681
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The bilateral leg strength deficit is present in old, young and adolescent females during isokinetic knee extension and flexion.
    Kuruganti U; Seaman K
    Eur J Appl Physiol; 2006 Jun; 97(3):322-6. PubMed ID: 16770468
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The effect of unilateral and bilateral strength training on the bilateral deficit and lean tissue mass in post-menopausal women.
    Janzen CL; Chilibeck PD; Davison KS
    Eur J Appl Physiol; 2006 Jun; 97(3):253-60. PubMed ID: 16568338
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices.
    Gabriel DA; Kamen G; Frost G
    Sports Med; 2006; 36(2):133-49. PubMed ID: 16464122
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Maximal isometric force and neural activity during bilateral and unilateral elbow flexion in humans.
    Oda S; Moritani T
    Eur J Appl Physiol Occup Physiol; 1994; 69(3):240-3. PubMed ID: 8001536
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Neuromuscular performance in voluntary bilateral and unilateral contraction and during electrical stimulation in men at different ages.
    Häkkinen K; Pastinen UM; Karsikas R; Linnamo V
    Eur J Appl Physiol Occup Physiol; 1995; 70(6):518-27. PubMed ID: 7556124
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Maximal voluntary force of bilateral and unilateral leg extension.
    Schantz PG; Moritani T; Karlson E; Johansson E; Lundh A
    Acta Physiol Scand; 1989 Jun; 136(2):185-92. PubMed ID: 2782091
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Neuromuscular drive and force production are not altered during bilateral contractions.
    Jakobi JM; Cafarelli E
    J Appl Physiol (1985); 1998 Jan; 84(1):200-6. PubMed ID: 9451636
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Comparison of motor unit activation during unilateral and bilateral leg extension.
    Vandervoort AA; Sale DG; Moroz J
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Jan; 56(1):46-51. PubMed ID: 6693334
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Muscle activation and torque development during maximal unilateral and bilateral isokinetic knee extensions.
    Cresswell AG; Ovendal AH
    J Sports Med Phys Fitness; 2002 Mar; 42(1):19-25. PubMed ID: 11832870
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Muscle activation and force production during bilateral and unilateral concentric and isometric contractions of the knee extensors in men and women at different ages.
    Häkkinen K; Kraemer WJ; Newton RU
    Electromyogr Clin Neurophysiol; 1997; 37(3):131-42. PubMed ID: 9187864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.