These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 2782105)

  • 1. Functional development of the visual system in normal and protein-deprived rats. IX. Visual evoked response in young rats.
    Sjöström A; Conradi NG
    Acta Physiol Scand; 1989 Aug; 136(4):605-9. PubMed ID: 2782105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional development of the visual system in normal and protein-deprived rats. IV. Latencies in the specific visual pathway of adult rats.
    Sjöström A; Conradi NG; Andersson SA
    Acta Physiol Scand; 1987 Aug; 130(4):695-703. PubMed ID: 3630742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional development of the visual system in normal and protein-deprived rats. VI. Evoked responses in adult rats, protein deprived in early life and nutritionally rehabilitated from weaning.
    Sjöström A; Conradi NG
    Acta Physiol Scand; 1987 Aug; 130(4):713-21. PubMed ID: 3630744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional development of the visual system in normal and protein-deprived rats. V. Specific cortical response and repetitive stimulation in adult rats.
    Sjöström A; Conradi NG; Andersson SA
    Acta Physiol Scand; 1987 Aug; 130(4):705-11. PubMed ID: 3630743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional development of the visual system in normal and protein deprived rats. I. Persistent changes in light-induced cortical evoked response.
    Sjöström A; Conradi NG; Andersson SA
    Acta Physiol Scand; 1984 Apr; 120(4):585-94. PubMed ID: 6435394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional development of the visual system in normal and protein-deprived rats. VIII. Post-natal development of optic nerve axons.
    Conradi NG; Sjöström A; Rydenhag B
    Acta Physiol Scand; 1989 Aug; 136(4):597-603. PubMed ID: 2782104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional development of the visual system in normal and protein-deprived rats. VII. Lamination of oxidative enzyme activity in the visual cortex during post-natal development.
    Conradi NG; Sjöström A
    Acta Physiol Scand; 1989 Aug; 136(4):589-96. PubMed ID: 2782103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional development of the visual system in normal and protein deprived rats. III: Recordings from adult optic nerve in vitro.
    Sjöström A; Conradi NG; Gustafsson B; Wigström H
    Acta Physiol Scand; 1985 Nov; 125(3):353-8. PubMed ID: 4083041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flashed pattern-induced activity in the visual system: I. The short latency evoked response recorded from the cat visual cortex.
    Sjöström A; Abrahamsson M; Norrsell K; Helgason G; Roos A
    Acta Physiol Scand; 1991 Sep; 143(1):1-9. PubMed ID: 1957695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional development of the visual system in normal and protein deprived rats. II. Morphometric and biochemical studies on adult optic nerve.
    Conradi NG; Sjöström A; Karlsson B; Sourander P
    Acta Physiol Scand; 1985 Oct; 125(2):277-83. PubMed ID: 4072710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triethyltin: ambient temperature alters visual system toxicity.
    Dyer RS; Howell WE
    Neurobehav Toxicol Teratol; 1982; 4(2):267-71. PubMed ID: 7088258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical activity regulates corticothalamic synapses in dorsal lateral geniculate nucleus of rats.
    Yoshida M; Satoh T; Nakamura KC; Kaneko T; Hata Y
    Neurosci Res; 2009 May; 64(1):118-27. PubMed ID: 19428690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topography of cells responding with long latencies to flashes and cells projecting to layer I of area 17 in the rat dorsal lateral geniculate nucleus.
    Brauer K; Davidowa H; Schober W
    J Hirnforsch; 1984; 25(5):569-75. PubMed ID: 6501871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual-evoked responses elicited by the onset and offset of sinusoidal gratings: latency, waveform, and topographic characteristics.
    Parker DM; Salzen EA; Lishman JR
    Invest Ophthalmol Vis Sci; 1982 May; 22(5):675-80. PubMed ID: 7076411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maturation of the visual evoked response in newborn miniature pigs.
    Mattsson JL; Fry WN; Boward CA; Miller E
    Am J Vet Res; 1978 Aug; 39(8):1279-81. PubMed ID: 697135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced latency of the visual evoked cortical response following cryogenic injury to the cerebral cortex--a neuroexcitatory phenomenon.
    Xu S; Wagner HG; Joo F; Cohn R; Klatzo I
    Neurol Res; 1992 Jun; 14(3):233-5. PubMed ID: 1355275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Motivational dependence of changes in visual evoked potentials in rats during water deprivation].
    Kolle U; Bartsch P
    Biomed Biochim Acta; 1988; 47(12):1059-64. PubMed ID: 3254152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual evoked response testing method for neonatal rats.
    Albee RR; Mattsson JL
    Neurobehav Toxicol Teratol; 1983; 5(5):497-501. PubMed ID: 6664407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Evoked responses of the lateral geniculate body to photic stimulation in intact and visually deprived rabbits].
    Pisareva NL
    Neirofiziologiia; 1978; 10(5):504-9. PubMed ID: 703903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual post-stimulus excitability changes in freely moving rats indicated by amplitude and peak time of evoked potentials.
    Brankack J; Klingberg F
    Acta Biol Med Ger; 1982; 41(9):801-9. PubMed ID: 7164699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.