BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27821284)

  • 1. The nucleolar helicase DDX56 redistributes to West Nile virus assembly sites.
    Reid CR; Hobman TC
    Virology; 2017 Jan; 500():169-177. PubMed ID: 27821284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The helicase activity of DDX56 is required for its role in assembly of infectious West Nile virus particles.
    Xu Z; Hobman TC
    Virology; 2012 Nov; 433(1):226-35. PubMed ID: 22925334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The capsid-binding nucleolar helicase DDX56 is important for infectivity of West Nile virus.
    Xu Z; Anderson R; Hobman TC
    J Virol; 2011 Jun; 85(11):5571-80. PubMed ID: 21411523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The West Nile virus assembly process evades the conserved antiviral mechanism of the interferon-induced MxA protein.
    Hoenen A; Gillespie L; Morgan G; van der Heide P; Khromykh A; Mackenzie J
    Virology; 2014 Jan; 448():104-16. PubMed ID: 24314641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of virus-specific vesicles assembled by West Nile virus non-structural proteins.
    Yu L; Takeda K; Gao Y
    Virology; 2017 Jun; 506():130-140. PubMed ID: 28388487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA interference screen for human genes associated with West Nile virus infection.
    Krishnan MN; Ng A; Sukumaran B; Gilfoy FD; Uchil PD; Sultana H; Brass AL; Adametz R; Tsui M; Qian F; Montgomery RR; Lev S; Mason PW; Koski RA; Elledge SJ; Xavier RJ; Agaisse H; Fikrig E
    Nature; 2008 Sep; 455(7210):242-5. PubMed ID: 18690214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-linked glycosylation of west nile virus envelope proteins influences particle assembly and infectivity.
    Hanna SL; Pierson TC; Sanchez MD; Ahmed AA; Murtadha MM; Doms RW
    J Virol; 2005 Nov; 79(21):13262-74. PubMed ID: 16227249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Context-Dependent Cleavage of the Capsid Protein by the West Nile Virus Protease Modulates the Efficiency of Virus Assembly.
    VanBlargan LA; Davis KA; Dowd KA; Akey DL; Smith JL; Pierson TC
    J Virol; 2015 Aug; 89(16):8632-42. PubMed ID: 26063422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential Dual Role of West Nile Virus NS2B in Orchestrating NS3 Enzymatic Activity in Viral Replication.
    Tseng AC; Nerurkar VR; Neupane KR; Kae H; Kaufusi PH
    Viruses; 2021 Jan; 13(2):. PubMed ID: 33572517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Helicase Domain of West Nile Virus NS3 Protein Plays a Role in Inhibition of Type I Interferon Signalling.
    Setoh YX; Periasamy P; Peng NYG; Amarilla AA; Slonchak A; Khromykh AA
    Viruses; 2017 Nov; 9(11):. PubMed ID: 29099073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methodology for Identifying Host Factors Involved in West Nile Virus Infection.
    Krishnan MN
    Methods Mol Biol; 2016; 1435():115-27. PubMed ID: 27188554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DDX56 Binds to Chikungunya Virus RNA To Control Infection.
    Taschuk F; Tapescu I; Moy RH; Cherry S
    mBio; 2020 Oct; 11(5):. PubMed ID: 33109765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between the West Nile virus capsid protein and the host cell-encoded phosphatase inhibitor, I2PP2A.
    Hunt TA; Urbanowski MD; Kakani K; Law LM; Brinton MA; Hobman TC
    Cell Microbiol; 2007 Nov; 9(11):2756-66. PubMed ID: 17868381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autophagy inhibits viral genome replication and gene expression stages in West Nile virus infection.
    Kobayashi S; Orba Y; Yamaguchi H; Takahashi K; Sasaki M; Hasebe R; Kimura T; Sawa H
    Virus Res; 2014 Oct; 191():83-91. PubMed ID: 25091564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway.
    Chu JJ; Ng ML
    J Virol; 2004 Oct; 78(19):10543-55. PubMed ID: 15367621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bagaza virus inhibits Japanese encephalitis & West Nile virus replication in Culex tritaeniorhynchus & Cx. quinquefasciatus mosquitoes.
    Sudeep AB; Bondre VP; George R; Ghodke YS; Aher RV; Gokhale MD
    Indian J Med Res; 2015 Dec; 142 Suppl(Suppl 1):S44-51. PubMed ID: 26905241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. West Nile virus and kidney disease.
    Barzon L; Pacenti M; Palù G
    Expert Rev Anti Infect Ther; 2013 May; 11(5):479-87. PubMed ID: 23627854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The chicken 2'-5' oligoadenylate synthetase A inhibits the replication of West Nile virus.
    Tag-El-Din-Hassan HT; Sasaki N; Moritoh K; Torigoe D; Maeda A; Agui T
    Jpn J Vet Res; 2012 Aug; 60(2-3):95-103. PubMed ID: 23094584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Actively replicating West Nile virus is resistant to cytoplasmic delivery of siRNA.
    Geiss BJ; Pierson TC; Diamond MS
    Virol J; 2005 Jun; 2():53. PubMed ID: 15985182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virus-induced Ca2+ influx extends survival of west nile virus-infected cells.
    Scherbik SV; Brinton MA
    J Virol; 2010 Sep; 84(17):8721-31. PubMed ID: 20538858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.