These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27821284)

  • 1. The nucleolar helicase DDX56 redistributes to West Nile virus assembly sites.
    Reid CR; Hobman TC
    Virology; 2017 Jan; 500():169-177. PubMed ID: 27821284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The helicase activity of DDX56 is required for its role in assembly of infectious West Nile virus particles.
    Xu Z; Hobman TC
    Virology; 2012 Nov; 433(1):226-35. PubMed ID: 22925334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The capsid-binding nucleolar helicase DDX56 is important for infectivity of West Nile virus.
    Xu Z; Anderson R; Hobman TC
    J Virol; 2011 Jun; 85(11):5571-80. PubMed ID: 21411523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The West Nile virus assembly process evades the conserved antiviral mechanism of the interferon-induced MxA protein.
    Hoenen A; Gillespie L; Morgan G; van der Heide P; Khromykh A; Mackenzie J
    Virology; 2014 Jan; 448():104-16. PubMed ID: 24314641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of virus-specific vesicles assembled by West Nile virus non-structural proteins.
    Yu L; Takeda K; Gao Y
    Virology; 2017 Jun; 506():130-140. PubMed ID: 28388487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA interference screen for human genes associated with West Nile virus infection.
    Krishnan MN; Ng A; Sukumaran B; Gilfoy FD; Uchil PD; Sultana H; Brass AL; Adametz R; Tsui M; Qian F; Montgomery RR; Lev S; Mason PW; Koski RA; Elledge SJ; Xavier RJ; Agaisse H; Fikrig E
    Nature; 2008 Sep; 455(7210):242-5. PubMed ID: 18690214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-linked glycosylation of west nile virus envelope proteins influences particle assembly and infectivity.
    Hanna SL; Pierson TC; Sanchez MD; Ahmed AA; Murtadha MM; Doms RW
    J Virol; 2005 Nov; 79(21):13262-74. PubMed ID: 16227249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Context-Dependent Cleavage of the Capsid Protein by the West Nile Virus Protease Modulates the Efficiency of Virus Assembly.
    VanBlargan LA; Davis KA; Dowd KA; Akey DL; Smith JL; Pierson TC
    J Virol; 2015 Aug; 89(16):8632-42. PubMed ID: 26063422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential Dual Role of West Nile Virus NS2B in Orchestrating NS3 Enzymatic Activity in Viral Replication.
    Tseng AC; Nerurkar VR; Neupane KR; Kae H; Kaufusi PH
    Viruses; 2021 Jan; 13(2):. PubMed ID: 33572517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Helicase Domain of West Nile Virus NS3 Protein Plays a Role in Inhibition of Type I Interferon Signalling.
    Setoh YX; Periasamy P; Peng NYG; Amarilla AA; Slonchak A; Khromykh AA
    Viruses; 2017 Nov; 9(11):. PubMed ID: 29099073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methodology for Identifying Host Factors Involved in West Nile Virus Infection.
    Krishnan MN
    Methods Mol Biol; 2016; 1435():115-27. PubMed ID: 27188554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DDX56 Binds to Chikungunya Virus RNA To Control Infection.
    Taschuk F; Tapescu I; Moy RH; Cherry S
    mBio; 2020 Oct; 11(5):. PubMed ID: 33109765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between the West Nile virus capsid protein and the host cell-encoded phosphatase inhibitor, I2PP2A.
    Hunt TA; Urbanowski MD; Kakani K; Law LM; Brinton MA; Hobman TC
    Cell Microbiol; 2007 Nov; 9(11):2756-66. PubMed ID: 17868381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autophagy inhibits viral genome replication and gene expression stages in West Nile virus infection.
    Kobayashi S; Orba Y; Yamaguchi H; Takahashi K; Sasaki M; Hasebe R; Kimura T; Sawa H
    Virus Res; 2014 Oct; 191():83-91. PubMed ID: 25091564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway.
    Chu JJ; Ng ML
    J Virol; 2004 Oct; 78(19):10543-55. PubMed ID: 15367621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bagaza virus inhibits Japanese encephalitis & West Nile virus replication in Culex tritaeniorhynchus & Cx. quinquefasciatus mosquitoes.
    Sudeep AB; Bondre VP; George R; Ghodke YS; Aher RV; Gokhale MD
    Indian J Med Res; 2015 Dec; 142 Suppl(Suppl 1):S44-51. PubMed ID: 26905241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. West Nile virus and kidney disease.
    Barzon L; Pacenti M; Palù G
    Expert Rev Anti Infect Ther; 2013 May; 11(5):479-87. PubMed ID: 23627854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The chicken 2'-5' oligoadenylate synthetase A inhibits the replication of West Nile virus.
    Tag-El-Din-Hassan HT; Sasaki N; Moritoh K; Torigoe D; Maeda A; Agui T
    Jpn J Vet Res; 2012 Aug; 60(2-3):95-103. PubMed ID: 23094584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Actively replicating West Nile virus is resistant to cytoplasmic delivery of siRNA.
    Geiss BJ; Pierson TC; Diamond MS
    Virol J; 2005 Jun; 2():53. PubMed ID: 15985182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virus-induced Ca2+ influx extends survival of west nile virus-infected cells.
    Scherbik SV; Brinton MA
    J Virol; 2010 Sep; 84(17):8721-31. PubMed ID: 20538858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.