These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27821306)

  • 1. Intrafibrillar silicified collagen scaffold modulates monocyte to promote cell homing, angiogenesis and bone regeneration.
    Sun JL; Jiao K; Niu LN; Jiao Y; Song Q; Shen LJ; Tay FR; Chen JH
    Biomaterials; 2017 Jan; 113():203-216. PubMed ID: 27821306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrafibrillar silicified collagen scaffold promotes in-situ bone regeneration by activating the monocyte p38 signaling pathway.
    Sun JL; Jiao K; Song Q; Ma CF; Ma C; Tay FR; Niu LN; Chen JH
    Acta Biomater; 2018 Feb; 67():354-365. PubMed ID: 29274477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrafibrillar silicification of collagen scaffolds for sustained release of stem cell homing chemokine in hard tissue regeneration.
    Niu LN; Jiao K; Qi YP; Nikonov S; Yiu CK; Arola DD; Gong SQ; El-Marakby A; Carrilho MR; Hamrick MW; Hargreaves KM; Diogenes A; Chen JH; Pashley DH; Tay FR
    FASEB J; 2012 Nov; 26(11):4517-29. PubMed ID: 22859369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc Silicate/Nano-Hydroxyapatite/Collagen Scaffolds Promote Angiogenesis and Bone Regeneration via the p38 MAPK Pathway in Activated Monocytes.
    Song Y; Wu H; Gao Y; Li J; Lin K; Liu B; Lei X; Cheng P; Zhang S; Wang Y; Sun J; Bi L; Pei G
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16058-16075. PubMed ID: 32182418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrafibrillar-silicified collagen scaffolds enhance the osteogenic capacity of human dental pulp stem cells.
    Niu LN; Sun JQ; Li QH; Jiao K; Shen LJ; Wu D; Tay F; Chen JH
    J Dent; 2014 Jul; 42(7):839-49. PubMed ID: 24705068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect.
    Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG
    Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteogenic differentiation and angiogenesis with cocultured adipose-derived stromal cells and bone marrow stromal cells.
    Kim KI; Park S; Im GI
    Biomaterials; 2014 Jun; 35(17):4792-804. PubMed ID: 24655782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper-doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects.
    Zhao S; Wang H; Zhang Y; Huang W; Rahaman MN; Liu Z; Wang D; Zhang C
    Acta Biomater; 2015 Mar; 14():185-96. PubMed ID: 25534470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled release of vascular endothelial growth factor from spray-dried alginate microparticles in collagen-hydroxyapatite scaffolds for promoting vascularization and bone repair.
    Quinlan E; López-Noriega A; Thompson EM; Hibbitts A; Cryan SA; O'Brien FJ
    J Tissue Eng Regen Med; 2017 Apr; 11(4):1097-1109. PubMed ID: 25783558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deferoxamine released from poly(lactic-co-glycolic acid) promotes healing of osteoporotic bone defect via enhanced angiogenesis and osteogenesis.
    Jia P; Chen H; Kang H; Qi J; Zhao P; Jiang M; Guo L; Zhou Q; Qian ND; Zhou HB; Xu YJ; Fan Y; Deng LF
    J Biomed Mater Res A; 2016 Oct; 104(10):2515-27. PubMed ID: 27227768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translating the role of osteogenic-angiogenic coupling in bone formation: Highly efficient chitosan-pDNA activated scaffolds can accelerate bone regeneration in critical-sized bone defects.
    Raftery RM; Mencía Castaño I; Chen G; Cavanagh B; Quinn B; Curtin CM; Cryan SA; O'Brien FJ
    Biomaterials; 2017 Dec; 149():116-127. PubMed ID: 29024837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-free scaffolds with different stiffness but same microstructure promote bone regeneration in rabbit large bone defect model.
    Chen G; Yang L; Lv Y
    J Biomed Mater Res A; 2016 Apr; 104(4):833-41. PubMed ID: 26650620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Europium-doped mesoporous silica nanosphere as an immune-modulating osteogenesis/angiogenesis agent.
    Shi M; Xia L; Chen Z; Lv F; Zhu H; Wei F; Han S; Chang J; Xiao Y; Wu C
    Biomaterials; 2017 Nov; 144():176-187. PubMed ID: 28837959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of simvastatin on chemotactic capability of SDF-1α and the promotion of bone regeneration.
    Liu YS; Ou ME; Liu H; Gu M; Lv LW; Fan C; Chen T; Zhao XH; Jin CY; Zhang X; Ding Y; Zhou YS
    Biomaterials; 2014 May; 35(15):4489-98. PubMed ID: 24589359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.
    Chen Y; Kawazoe N; Chen G
    Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells.
    van Gastel N; Torrekens S; Roberts SJ; Moermans K; Schrooten J; Carmeliet P; Luttun A; Luyten FP; Carmeliet G
    Stem Cells; 2012 Nov; 30(11):2460-71. PubMed ID: 22911908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collagen hydrogel scaffold promotes mesenchymal stem cell and endothelial cell coculture for bone tissue engineering.
    Nguyen BB; Moriarty RA; Kamalitdinov T; Etheridge JM; Fisher JP
    J Biomed Mater Res A; 2017 Apr; 105(4):1123-1131. PubMed ID: 28093887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Periostin accelerates bone healing mediated by human mesenchymal stem cell-embedded hydroxyapatite/tricalcium phosphate scaffold.
    Heo SC; Shin WC; Lee MJ; Kim BR; Jang IH; Choi EJ; Lee JS; Kim JH
    PLoS One; 2015; 10(3):e0116698. PubMed ID: 25775460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Endochondral Ossification-Based Approach to Bone Repair: Chondrogenically Primed Mesenchymal Stem Cell-Laden Scaffolds Support Greater Repair of Critical-Sized Cranial Defects Than Osteogenically Stimulated Constructs In Vivo.
    Thompson EM; Matsiko A; Kelly DJ; Gleeson JP; O'Brien FJ
    Tissue Eng Part A; 2016 Mar; 22(5-6):556-67. PubMed ID: 26896424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.