These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 27821703)

  • 21. The molecular evolutionary tree of lizards, snakes, and amphisbaenians.
    Vidal N; Hedges SB
    C R Biol; 2009; 332(2-3):129-39. PubMed ID: 19281946
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Convergence across a continent: adaptive diversification in a recent radiation of Australian lizards.
    Blom MP; Horner P; Moritz C
    Proc Biol Sci; 2016 Jun; 283(1832):. PubMed ID: 27306048
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparing species tree estimation with large anchored phylogenomic and small Sanger-sequenced molecular datasets: an empirical study on Malagasy pseudoxyrhophiine snakes.
    Ruane S; Raxworthy CJ; Lemmon AR; Lemmon EM; Burbrink FT
    BMC Evol Biol; 2015 Oct; 15():221. PubMed ID: 26459325
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How phylogeny and foraging ecology drive the level of chemosensory exploration in lizards and snakes.
    Baeckens S; Van Damme R; Cooper WE
    J Evol Biol; 2017 Mar; 30(3):627-640. PubMed ID: 28009479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimating rates and patterns of morphological evolution from phylogenies: lessons in limb lability from Australian Lerista lizards.
    Wiens JJ
    J Biol; 2009; 8(2):19. PubMed ID: 19291259
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shifts in diversification rates and clade ages explain species richness in higher-level sedge taxa (Cyperaceae).
    Escudero M; Hipp A
    Am J Bot; 2013 Dec; 100(12):2403-11. PubMed ID: 24249788
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exceptional among-lineage variation in diversification rates during the radiation of Australia's most diverse vertebrate clade.
    Rabosky DL; Donnellan SC; Talaba AL; Lovette IJ
    Proc Biol Sci; 2007 Dec; 274(1628):2915-23. PubMed ID: 17878143
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Congruence and Conflict in the Higher-Level Phylogenetics of Squamate Reptiles: An Expanded Phylogenomic Perspective.
    Singhal S; Colston TJ; Grundler MR; Smith SA; Costa GC; Colli GR; Moritz C; Pyron RA; Rabosky DL
    Syst Biol; 2021 Apr; 70(3):542-557. PubMed ID: 32681800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling colonization rates over time: Generating null models and testing model adequacy in phylogenetic analyses of species assemblages.
    Hua X; Bromham L
    Evolution; 2020 Dec; 74(12):2605-2616. PubMed ID: 32840863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals.
    Pasquesi GIM; Adams RH; Card DC; Schield DR; Corbin AB; Perry BW; Reyes-Velasco J; Ruggiero RP; Vandewege MW; Shortt JA; Castoe TA
    Nat Commun; 2018 Jul; 9(1):2774. PubMed ID: 30018307
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How Ecology and Landscape Dynamics Shape Phylogenetic Trees.
    Gascuel F; Ferrière R; Aguilée R; Lambert A
    Syst Biol; 2015 Jul; 64(4):590-607. PubMed ID: 25771083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation.
    Upham NS; Esselstyn JA; Jetz W
    PLoS Biol; 2019 Dec; 17(12):e3000494. PubMed ID: 31800571
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolutionary origins of viviparity consistent with palaeoclimate and lineage diversification.
    Recknagel H; Kamenos NA; Elmer KR
    J Evol Biol; 2021 Jul; 34(7):1167-1176. PubMed ID: 34107111
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The evolution of chemoreception in squamate reptiles: a phylogenetic approach.
    Schwenk K
    Brain Behav Evol; 1993; 41(3-5):124-37. PubMed ID: 8477337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species.
    Wiens JJ; Hutter CR; Mulcahy DG; Noonan BP; Townsend TM; Sites JW; Reeder TW
    Biol Lett; 2012 Dec; 8(6):1043-6. PubMed ID: 22993238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mass turnover and recovery dynamics of a diverse Australian continental radiation.
    Brennan IG; Oliver PM
    Evolution; 2017 May; 71(5):1352-1365. PubMed ID: 28213971
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Epoch-based likelihood models reveal no evidence for accelerated evolution of viviparity in squamate reptiles in response to cenozoic climate change.
    King B; Lee MS
    J Exp Zool B Mol Dev Evol; 2015 Sep; 324(6):525-31. PubMed ID: 25851129
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The ecological origins of snakes as revealed by skull evolution.
    Da Silva FO; Fabre AC; Savriama Y; Ollonen J; Mahlow K; Herrel A; Müller J; Di-Poï N
    Nat Commun; 2018 Jan; 9(1):376. PubMed ID: 29371624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Genomic structure and sex determination in squamate reptiles].
    Kichigin IG; Trifonov VA
    Tsitologiia; 2013; 55(4):253-8. PubMed ID: 23875459
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Barrier Displacement on a Neutral Landscape: Toward a Theory of Continental Biogeography.
    Albert JS; Schoolmaster DR; Tagliacollo V; Duke-Sylvester SM
    Syst Biol; 2017 Mar; 66(2):167-182. PubMed ID: 27590192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.