These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 27821739)
1. Spatial variability in tree regeneration after wildfire delays and dampens future bark beetle outbreaks. Seidl R; Donato DC; Raffa KF; Turner MG Proc Natl Acad Sci U S A; 2016 Nov; 113(46):13075-13080. PubMed ID: 27821739 [TBL] [Abstract][Full Text] [Related]
2. Bark beetle effects on fuel profiles across a range of stand structures in Douglas-fir forests of Greater Yellowstone. Donato DC; Harvey BJ; Romme WH; Simard M; Turner MG Ecol Appl; 2013 Jan; 23(1):3-20. PubMed ID: 23495632 [TBL] [Abstract][Full Text] [Related]
3. Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies. Harvey BJ; Donato DC; Turner MG Proc Natl Acad Sci U S A; 2014 Oct; 111(42):15120-5. PubMed ID: 25267633 [TBL] [Abstract][Full Text] [Related]
4. Influence of recent bark beetle outbreak on fire severity and postfire tree regeneration in montane Douglas-fir forests. Harvey BJ; Donato DC; Romme WH; Turner MG Ecology; 2013 Nov; 94(11):2475-86. PubMed ID: 24400499 [TBL] [Abstract][Full Text] [Related]
5. Fire severity and tree regeneration following bark beetle outbreaks: the role of outbreak stage and burning conditions. Harvey BJ; Donato DC; Romme WH; Turner MG Ecol Appl; 2014; 24(7):1608-25. PubMed ID: 29210226 [TBL] [Abstract][Full Text] [Related]
6. It takes a few to tango: changing climate and fire regimes can cause regeneration failure of two subalpine conifers. Hansen WD; Braziunas KH; Rammer W; Seidl R; Turner MG Ecology; 2018 Apr; 99(4):966-977. PubMed ID: 29464688 [TBL] [Abstract][Full Text] [Related]
7. Relative importance of climate and mountain pine beetle outbreaks on the occurrence of large wildfires in the western USA. Mietkiewicz N; Kulakowski D Ecol Appl; 2016 Dec; 26(8):2523-2535. PubMed ID: 27787956 [TBL] [Abstract][Full Text] [Related]
8. Influences of secondary disturbances on lodgepole pine stand development in Rocky Mountain National Park. Sibold JS; Veblen TT; Chipko K; Lawson L; Mathis E; Scott J Ecol Appl; 2007 Sep; 17(6):1638-55. PubMed ID: 17913129 [TBL] [Abstract][Full Text] [Related]
9. Impacts of bark beetle-induced tree mortality on pyrogenic carbon production and heat output in wildfires for fire modeling and global carbon accounting. Howell A; Bretfeld M; Belmont E Sci Total Environ; 2021 Mar; 760():144149. PubMed ID: 33341616 [TBL] [Abstract][Full Text] [Related]
10. Does the legacy of historical thinning treatments foster resilience to bark beetle outbreaks in subalpine forests? Morris JE; Buonanduci MS; Agne MC; Battaglia MA; Harvey BJ Ecol Appl; 2022 Jan; 32(1):e02474. PubMed ID: 34653267 [TBL] [Abstract][Full Text] [Related]
11. Fortifying the forest: thinning and burning increase resistance to a bark beetle outbreak and promote forest resilience. Hood SM; Baker S; Sala A Ecol Appl; 2016 Oct; 26(7):1984-2000. PubMed ID: 27755724 [TBL] [Abstract][Full Text] [Related]
12. Changes to the N cycle following bark beetle outbreaks in two contrasting conifer forest types. Griffin JM; Turner MG Oecologia; 2012 Oct; 170(2):551-65. PubMed ID: 22492169 [TBL] [Abstract][Full Text] [Related]
13. Recent bark beetle outbreaks influence wildfire severity in mixed-conifer forests of the Sierra Nevada, California, USA. Wayman RB; Safford HD Ecol Appl; 2021 Apr; 31(3):e02287. PubMed ID: 33426715 [TBL] [Abstract][Full Text] [Related]
14. Snagfall the first decade after severe bark beetle infestation of high-elevation forests in Colorado, USA. Rhoades CC; Hubbard RM; Hood PR; Starr BJ; Tinker DB; Elder K Ecol Appl; 2020 Apr; 30(3):e02059. PubMed ID: 31849139 [TBL] [Abstract][Full Text] [Related]
15. Short-interval severe fire erodes the resilience of subalpine lodgepole pine forests. Turner MG; Braziunas KH; Hansen WD; Harvey BJ Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11319-11328. PubMed ID: 31110003 [TBL] [Abstract][Full Text] [Related]
16. Do bark beetle outbreaks amplify or dampen future bark beetle disturbances in Central Europe? Sommerfeld A; Rammer W; Heurich M; Hilmers T; Müller J; Seidl R J Ecol; 2021 Feb; 109(2):737-749. PubMed ID: 33664526 [TBL] [Abstract][Full Text] [Related]
17. Climate influences on whitebark pine mortality from mountain pine beetle in the Greater Yellowstone Ecosystem. Buotte PC; Hicke JA; Preisler HK; Abatzoglou JT; Raffa KF; Logan JA Ecol Appl; 2016 Dec; 26(8):2505-2522. PubMed ID: 27907251 [TBL] [Abstract][Full Text] [Related]
18. Spatiotemporal patterns of mountain pine beetle activity in the southern Rocky Mountains. Chapman TB; Veblen TT; Schoennagel T Ecology; 2012 Oct; 93(10):2175-85. PubMed ID: 23185879 [TBL] [Abstract][Full Text] [Related]
19. Fire Severity Controlled Susceptibility to a 1940s Spruce Beetle Outbreak in Colorado, USA. Kulakowski D; Veblen TT; Bebi P PLoS One; 2016; 11(7):e0158138. PubMed ID: 27438289 [TBL] [Abstract][Full Text] [Related]
20. Twenty-four years after theYellowstone Fires: Are postfire lodgepole pine stands converging in structure and function? Turner MG; Whitby TG; Tinker DB; Romme WH Ecology; 2016 May; 97(5):1260-73. PubMed ID: 27349102 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]