BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2782182)

  • 1. How phosphocreatine buffers cyclic changes in ATP demand in working muscle.
    Funk C; Clark A; Connett RJ
    Adv Exp Med Biol; 1989; 248():687-92. PubMed ID: 2782182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compartmentation of high-energy phosphates in resting and working rat skeletal muscle.
    Hebisch S; Soboll S; Schwenen M; Sies H
    Biochim Biophys Acta; 1984 Feb; 764(2):117-24. PubMed ID: 6696884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple model of aerobic metabolism: applications to work transitions in muscle.
    Funk CI; Clark A; Connett RJ
    Am J Physiol; 1990 Jun; 258(6 Pt 1):C995-1005. PubMed ID: 2141761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy metabolism of working muscle: concentration profiles of selected metabolites.
    Edington DW; Ward GR; Saville WA
    Am J Physiol; 1973 Jun; 224(6):1375-80. PubMed ID: 4351297
    [No Abstract]   [Full Text] [Related]  

  • 5. Evidence for a relationship between ATP hydrolysis and changes in extracellular space and fibre diameter during rigor development in skeletal muscle.
    Heffron JJ; Hegarty PV
    Comp Biochem Physiol A Comp Physiol; 1974 Sep; 49(1A):43-56. PubMed ID: 4153729
    [No Abstract]   [Full Text] [Related]  

  • 6. Energy metabolism and fatigue during intense muscle contraction.
    Hultman E; Greenhaff PL; Ren JM; Söderlund K
    Biochem Soc Trans; 1991 Apr; 19(2):347-53. PubMed ID: 1889614
    [No Abstract]   [Full Text] [Related]  

  • 7. Phosphocreatine and ATP concentrations increase during flow-stimulated metabolism in a non-contracting muscle.
    Mejsnar JA; Kushmerick MJ; Williams DL
    Experientia; 1992 Dec; 48(11-12):1125-7. PubMed ID: 1473577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Resynthesis of adenosine triphosphate and phosphocreatine in skeletal muscle during recovery from exercise (author's transl)].
    Granata AL; Corsi A
    Riv Biol; 1980; 73(3):433-5. PubMed ID: 7244522
    [No Abstract]   [Full Text] [Related]  

  • 9. [Effect of physical training on lactate-, adenosine triphosphate, and creatine phosphate concentration in working muscles].
    Karlsson J; Saltin B
    Nord Med; 1971 Aug; 86(34):1010. PubMed ID: 5099367
    [No Abstract]   [Full Text] [Related]  

  • 10. Changes in ATP and creatine phosphate storage in skeletal muscle of rats trained at 900 and 7,600 feet.
    Gale JB; Nagle FJ
    Nature; 1971 Jul; 232(5309):342-3. PubMed ID: 5094842
    [No Abstract]   [Full Text] [Related]  

  • 11. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Energetics of maximal muscular exertion in man].
    Flandrois R
    J Physiol (Paris); 1979; 75(2):195-205. PubMed ID: 40015
    [No Abstract]   [Full Text] [Related]  

  • 13. Theoretical support for the heart phosphocreatine energy transport shuttle based on the intracellular diffusion limited mobility of ADP.
    Jacobus WE
    Biochem Biophys Res Commun; 1985 Dec; 133(3):1035-41. PubMed ID: 4084301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of ATP turnover and metabolite changes on IMP formation and glycolysis in rat skeletal muscle.
    Sahlin K; Gorski J; Edström L
    Am J Physiol; 1990 Sep; 259(3 Pt 1):C409-12. PubMed ID: 2399963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why do cells need phosphocreatine and a phosphocreatine shuttle.
    Kammermeier H
    J Mol Cell Cardiol; 1987 Jan; 19(1):115-8. PubMed ID: 3560235
    [No Abstract]   [Full Text] [Related]  

  • 16. Lactate, ATP, and CP in working muscles during exhaustive exercise in man.
    Karlsson J; Saltin B
    J Appl Physiol; 1970 Nov; 29(5):596-602. PubMed ID: 5474850
    [No Abstract]   [Full Text] [Related]  

  • 17. Contributions of energy pathways to ATP production and pH variations in postmortem muscles.
    Wang C; Matarneh SK; Gerrard D; Tan J
    Meat Sci; 2022 Jul; 189():108828. PubMed ID: 35461106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sepsis alters skeletal muscle energetics and membrane function.
    Jacobs DO; Kobayashi T; Imagire J; Grant C; Kesselly B; Wilmore DW
    Surgery; 1991 Aug; 110(2):318-25; 325-6. PubMed ID: 1650038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous 31P MRS of the soleus and gastrocnemius in Sherpas during graded calf muscle exercise.
    Allen PS; Matheson GO; Zhu G; Gheorgiu D; Dunlop RS; Falconer T; Stanley C; Hochachka PW
    Am J Physiol; 1997 Sep; 273(3 Pt 2):R999-1007. PubMed ID: 9321879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Phosphorus metabolism in the red lateral muscles of Trachurus mediterraneus during muscle loading].
    Trusevich VV
    Zh Evol Biokhim Fiziol; 1976; 12(2):142-7. PubMed ID: 941567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.