These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 27822037)

  • 1. Self-assembling peptide nanofibers containing phenylalanine for the controlled release of 5-fluorouracil.
    Ashwanikumar N; Kumar NA; Saneesh Babu PS; Sivakumar KC; Vadakkan MV; Nair P; Hema Saranya I; Asha Nair S; Vinod Kumar GS
    Int J Nanomedicine; 2016; 11():5583-5594. PubMed ID: 27822037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemotherapeutic Delivery from a Self-Assembling Peptide Nanofiber Hydrogel for the Management of Glioblastoma.
    Karavasili C; Panteris E; Vizirianakis IS; Koutsopoulos S; Fatouros DG
    Pharm Res; 2018 Jun; 35(8):166. PubMed ID: 29943122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanofibrous scaffold from self-assembly of beta-sheet peptides containing phenylalanine for controlled release.
    Zhao Y; Tanaka M; Kinoshita T; Higuchi M; Tan T
    J Control Release; 2010 Mar; 142(3):354-60. PubMed ID: 19932721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled release and entrapment of enantiomers in self-assembling scaffolds composed of beta-sheet peptides.
    Zhao Y; Tanaka M; Kinoshita T; Higuchi M; Tan T
    Biomacromolecules; 2009 Dec; 10(12):3266-72. PubMed ID: 19904950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustained release of 5-fluorouracil by incorporation into sodium carboxymethylcellulose sub-micron fibers.
    Cai X; Luan Y; Dong Q; Shao W; Li Z; Zhao Z
    Int J Pharm; 2011 Oct; 419(1-2):240-6. PubMed ID: 21782913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-Triggered Release of Hydrophobic Molecules from Self-Assembling Hybrid Nanoscaffolds.
    Lu L; Unsworth LD
    Biomacromolecules; 2016 Apr; 17(4):1425-36. PubMed ID: 26938197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the hemocompatibility and rapid hemostasis of (RADA)4 peptide-based hydrogels.
    Saini A; Serrano K; Koss K; Unsworth LD
    Acta Biomater; 2016 Feb; 31():71-79. PubMed ID: 26654763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorouracil-Loaded Gold Nanoparticles for the Treatment of Skin Cancer: Development, in Vitro Characterization, and in Vivo Evaluation in a Mouse Skin Cancer Xenograft Model.
    Safwat MA; Soliman GM; Sayed D; Attia MA
    Mol Pharm; 2018 Jun; 15(6):2194-2205. PubMed ID: 29701979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-EGFR-mAb and 5-Fluorouracil Conjugated Polymeric Nanoparticles for Colorectal Cancer.
    Bhattacharya S
    Recent Pat Anticancer Drug Discov; 2021; 16(1):84-100. PubMed ID: 33349222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of α-tocopherol surface-modified targeted delivery of 5-fluorouracil-loaded poly-D, L-lactic-co-glycolic acid nanoparticles against oral squamous cell carcinoma.
    Srivastava S; Gupta S; Mohammad S; Ahmad I
    J Cancer Res Ther; 2019; 15(3):480-490. PubMed ID: 31169208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methacrylic-based nanogels for the pH-sensitive delivery of 5-fluorouracil in the colon.
    Ashwanikumar N; Kumar NA; Nair SA; Kumar GV
    Int J Nanomedicine; 2012; 7():5769-79. PubMed ID: 23172988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of a 5-fluorouracil-dipeptide hydrogel.
    Sun Y; Kaplan JA; Shieh A; Sun HL; Croce CM; Grinstaff MW; Parquette JR
    Chem Commun (Camb); 2016 Apr; 52(30):5254-7. PubMed ID: 26996124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyaluronidase enzyme core-5-fluorouracil-loaded chitosan-PEG-gelatin polymer nanocomposites as targeted and controlled drug delivery vehicles.
    Rajan M; Raj V; Al-Arfaj AA; Murugan AM
    Int J Pharm; 2013 Sep; 453(2):514-22. PubMed ID: 23796828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polydopamine-coated liposomes as pH-sensitive anticancer drug carriers.
    Zong W; Hu Y; Su Y; Luo N; Zhang X; Li Q; Han X
    J Microencapsul; 2016 May; 33(3):257-62. PubMed ID: 27174396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wheat germ agglutinin-conjugated chitosan-Ca-alginate microparticles for local colon delivery of 5-FU: development and in vitro characterization.
    Glavas Dodov M; Calis S; Crcarevska MS; Geskovski N; Petrovska V; Goracinova K
    Int J Pharm; 2009 Nov; 381(2):166-75. PubMed ID: 19580856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-layered injectable self-assembling peptide scaffold hydrogels for long-term sustained release of human antibodies.
    Koutsopoulos S; Zhang S
    J Control Release; 2012 Jun; 160(3):451-8. PubMed ID: 22465676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA.
    Nair K L; Jagadeeshan S; Nair SA; Kumar GS
    Int J Nanomedicine; 2011; 6():1685-97. PubMed ID: 21980233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of penetration potential of pH responsive double walled biodegradable nanogels coated with eucalyptus oil for the controlled delivery of 5-fluorouracil: In vitro and ex vivo studies.
    Sahu P; Kashaw SK; Jain S; Sau S; Iyer AK
    J Control Release; 2017 May; 253():122-136. PubMed ID: 28322977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Controlled release of fuctional proteins IGF-1, aFGF and VEGF through self-assembling peptide nanofiber hydrogel].
    Liu Y; Wu M; Lin B; Zhao X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Apr; 28(2):310-3. PubMed ID: 21604492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembling peptide nanofiber scaffolds for controlled release governed by gelator design and guest size.
    Zhao Y; Tanaka M; Kinoshita T; Higuchi M; Tan T
    J Control Release; 2010 Nov; 147(3):392-9. PubMed ID: 20709121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.