These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 27822574)
1. Dynameric host frameworks for the activation of lipase through H-bond and interfacial encapsulation. Zhang Y; Feng WX; Legrand YM; Supuran CT; Su CY; Barboiu M Chem Commun (Camb); 2016 Dec; 52(95):13768-13770. PubMed ID: 27822574 [TBL] [Abstract][Full Text] [Related]
2. Dynamic encapsulation and activation of carbonic anhydrase in multivalent dynameric host matrices. Zhang Y; Legrand YM; Petit E; Supuran CT; Barboiu M Chem Commun (Camb); 2016 Mar; 52(21):4053-5. PubMed ID: 26893199 [TBL] [Abstract][Full Text] [Related]
3. First Novozym 435 lipase-catalyzed Morita-Baylis-Hillman reaction in the presence of amides. Tian X; Zhang S; Zheng L Enzyme Microb Technol; 2016 Mar; 84():32-40. PubMed ID: 26827772 [TBL] [Abstract][Full Text] [Related]
4. Exponential Activation of Carbonic Anhydrase by Encapsulation in Dynameric Host Matrices with Chiral Discrimination. Zhang Y; Supuran CT; Barboiu M Chemistry; 2018 Jan; 24(3):715-720. PubMed ID: 29119623 [TBL] [Abstract][Full Text] [Related]
5. Dynamic asymmetric multicomponent resolution: lipase-mediated amidation of a double dynamic covalent system. Vongvilai P; Ramström O J Am Chem Soc; 2009 Oct; 131(40):14419-25. PubMed ID: 19807186 [TBL] [Abstract][Full Text] [Related]
6. Formation and hydrolysis of amide bonds by lipase A from Candida antarctica; exceptional features. Liljeblad A; Kallio P; Vainio M; Niemi J; Kanerva LT Org Biomol Chem; 2010 Feb; 8(4):886-95. PubMed ID: 20135048 [TBL] [Abstract][Full Text] [Related]
7. Possible influence of intramolecular hydrogen bonds on the three-dimensional structure of polyamine amides and their interaction with ionotropic glutamate receptors. Tikhonov DB; Magazanik LG; Mellor IR; Usherwood PN Recept Channels; 2000; 7(3):227-36. PubMed ID: 11342390 [TBL] [Abstract][Full Text] [Related]
8. Neutron crystallographic evidence of lipase-colipase complex activation by a micelle. Hermoso J; Pignol D; Penel S; Roth M; Chapus C; Fontecilla-Camps JC EMBO J; 1997 Sep; 16(18):5531-6. PubMed ID: 9312012 [TBL] [Abstract][Full Text] [Related]
9. Hydrogen-bonding dynamics in aqueous solutions of amides and acids: monomer, dimer, trimer, and polymer. Shirota H; Ushiyama H J Phys Chem B; 2008 Oct; 112(43):13542-51. PubMed ID: 18841884 [TBL] [Abstract][Full Text] [Related]
10. Activation of Candida rugosa lipase at alkane-aqueous interfaces: a molecular dynamics study. James JJ; Lakshmi BS; Seshasayee AS; Gautam P FEBS Lett; 2007 Sep; 581(23):4377-83. PubMed ID: 17765226 [TBL] [Abstract][Full Text] [Related]
11. Lipase incorporated ionic liquid polymers as active, stable and reusable biocatalysts. Moniruzzaman M; Ino K; Kamiya N; Goto M Org Biomol Chem; 2012 Oct; 10(38):7707-13. PubMed ID: 22903458 [TBL] [Abstract][Full Text] [Related]
12. Dodecenyl succinylated alginate as a novel material for encapsulation and hyperactivation of lipases. Falkeborg M; Paitaid P; Shu AN; Pérez B; Guo Z Carbohydr Polym; 2015 Nov; 133():194-202. PubMed ID: 26344272 [TBL] [Abstract][Full Text] [Related]
13. Hydrogen bond stabilities in membrane-reconstituted alamethicin from amide-resolved hydrogen-exchange measurements. Dempsey CE; Handcock LJ Biophys J; 1996 Apr; 70(4):1777-88. PubMed ID: 8785337 [TBL] [Abstract][Full Text] [Related]
14. Exploring the specific features of interfacial enzymology based on lipase studies. Aloulou A; Rodriguez JA; Fernandez S; van Oosterhout D; Puccinelli D; Carrière F Biochim Biophys Acta; 2006 Sep; 1761(9):995-1013. PubMed ID: 16931141 [TBL] [Abstract][Full Text] [Related]
15. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Brzozowski AM; Derewenda U; Derewenda ZS; Dodson GG; Lawson DM; Turkenburg JP; Bjorkling F; Huge-Jensen B; Patkar SA; Thim L Nature; 1991 Jun; 351(6326):491-4. PubMed ID: 2046751 [TBL] [Abstract][Full Text] [Related]
16. Directed evolution of Pseudomonas aeruginosa lipase for improved amide-hydrolyzing activity. Fujii R; Nakagawa Y; Hiratake J; Sogabe A; Sakata K Protein Eng Des Sel; 2005 Feb; 18(2):93-101. PubMed ID: 15788423 [TBL] [Abstract][Full Text] [Related]
17. Context-dependent contributions of backbone hydrogen bonding to beta-sheet folding energetics. Deechongkit S; Nguyen H; Powers ET; Dawson PE; Gruebele M; Kelly JW Nature; 2004 Jul; 430(6995):101-5. PubMed ID: 15229605 [TBL] [Abstract][Full Text] [Related]
18. Kinetic solvent effects on the reactions of the cumyloxyl radical with tertiary amides. Control over the hydrogen atom transfer reactivity and selectivity through solvent polarity and hydrogen bonding. Salamone M; Mangiacapra L; Bietti M J Org Chem; 2015 Jan; 80(2):1149-54. PubMed ID: 25545198 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and metabolism of naphthyl substituted phosphoramidate derivatives of stavudine. Venkatachalam TK; Qazi S; Uckun FM Bioorg Med Chem; 2006 Aug; 14(15):5161-77. PubMed ID: 16697204 [TBL] [Abstract][Full Text] [Related]
20. D/H amide kinetic isotope effects reveal when hydrogen bonds form during protein folding. Krantz BA; Moran LB; Kentsis A; Sosnick TR Nat Struct Biol; 2000 Jan; 7(1):62-71. PubMed ID: 10625430 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]