These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 27822649)

  • 21. Probing cysteine self-assembled monolayers over gold nanoparticles--towards selective electrochemical sensors.
    Galal A; Atta NF; El-Ads EH
    Talanta; 2012 May; 93():264-73. PubMed ID: 22483909
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bimetal-organic framework-integrated electrochemical sensor for on-chip detection of H
    Xu Y; Huang W; Duan H; Xiao F
    Biosens Bioelectron; 2024 Sep; 260():116463. PubMed ID: 38838574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Smartphone Imaging Device for Multimodal Detection of Hydrogen Sulfide Using Cu-Doped MOF Sensors.
    Shang H; Zhang X; Ding M; Zhang A; Du J; Zhang R
    ACS Appl Mater Interfaces; 2024 Jun; 16(24):30890-30899. PubMed ID: 38843539
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical etching of pH-sensitive aggregation-induced emission-active gold nanoclusters for ultra-sensitive detection of cysteine.
    Wang J; Lin X; Su L; Yin J; Shu T; Zhang X
    Nanoscale; 2018 Dec; 11(1):294-300. PubMed ID: 30534733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensing of Hydrogen Sulfide Gas in the Raman-Silent Region Based on Gold Nano-Bipyramids (Au NBPs) Encapsulated by Zeolitic Imidazolate Framework-8.
    Chen J; Guo L; Chen L; Qiu B; Hong G; Lin Z
    ACS Sens; 2020 Dec; 5(12):3964-3970. PubMed ID: 33275846
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Amperometric cell for subcutaneous detection of hydrogen sulfide in anesthetized experimental animals.
    Nagy L; Filotás D; Boros M; Pozsgai G; Pintér E; Nagy G
    Physiol Meas; 2014 Dec; 35(12):2475-87. PubMed ID: 25402396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A direct and selective electrochemical hydrogen sulfide sensor.
    Brown MD; Hall JR; Schoenfisch MH
    Anal Chim Acta; 2019 Jan; 1045():67-76. PubMed ID: 30454574
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduction of Ammineruthenium(III) by Sulfide Enables In Vivo Electrochemical Monitoring of Free Endogenous Hydrogen Sulfide.
    Wang S; Liu X; Zhang M
    Anal Chem; 2017 May; 89(10):5382-5388. PubMed ID: 28422478
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A fluorescent probe based on tetrahydro[5]helicene for highly selective recognition of hydrogen sulfide.
    Lei Y; Wang KP; Chen S; Zhang Q; Hu ZQ
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Nov; 204():295-300. PubMed ID: 29945112
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of an Electrochemical Dual H
    Lee J; Jeong Y; Park S; Suh M; Lee Y
    ACS Sens; 2021 Nov; 6(11):4089-4097. PubMed ID: 34648260
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of a novel impedimetric sensor based on l-Cysteine/Cu(II) modified gold electrode for sensitive determination of ampyra.
    Hashemi P; Afkhami A; Bagheri H; Amidi S; Madrakian T
    Anal Chim Acta; 2017 Sep; 984():185-192. PubMed ID: 28843562
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ratiometric measurement of hydrogen sulfide and cysteine/homocysteine ratios using a dual-fluorophore fragmentation strategy.
    Hammers MD; Pluth MD
    Anal Chem; 2014 Jul; 86(14):7135-40. PubMed ID: 24934901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 11-Mercaptoundecanoic acid capped gold nanoclusters with unusual aggregation-enhanced emission for selective fluorometric hydrogen sulfide determination.
    Lu F; Yang H; Tang Y; Yu CJ; Wang G; Yuan Z; Quan H
    Mikrochim Acta; 2020 Mar; 187(4):200. PubMed ID: 32130538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Cu@Au nanoparticle-based colorimetric competition assay for the detection of sulfide anion and cysteine.
    Zhang J; Xu X; Yuan Y; Yang C; Yang X
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):2928-31. PubMed ID: 21786826
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly selective and sensitive near-infrared-fluorescent probes for the detection of cellular hydrogen sulfide and the imaging of H2S in mice.
    Wu H; Krishnakumar S; Yu J; Liang D; Qi H; Lee ZW; Deng LW; Huang D
    Chem Asian J; 2014 Dec; 9(12):3604-11. PubMed ID: 25263845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrasensitive Protease Sensors Using Selective Affinity Binding, Selective Proteolytic Reaction, and Proximity-Dependent Electrochemical Reaction.
    Park S; Kim G; Seo J; Yang H
    Anal Chem; 2016 Dec; 88(24):11995-12000. PubMed ID: 28193073
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrating Prussian Blue Analog-Based Nanozyme and Online Visible Light Absorption Approach for Continuous Hydrogen Sulfide Monitoring in Brains of Living Rats.
    Wang C; Wang M; Zhang W; Liu J; Lu M; Li K; Lin Y
    Anal Chem; 2020 Jan; 92(1):662-667. PubMed ID: 31834784
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biothiols as chelators for preparation of N-(aminobutyl)-N-(ethylisoluminol)/Cu(2+) complexes bifunctionalized gold nanoparticles and sensitive sensing of pyrophosphate ion.
    Li F; Liu Y; Zhuang M; Zhang H; Liu X; Cui H
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18104-11. PubMed ID: 25275558
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a derivatization method for the quantification of hydrogen sulfide and its application in vascular calcification rats.
    Tan XX; Lian KQ; Li X; Li N; Wang W; Kang WJ; Shi HM
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Jun; 1055-1056():8-14. PubMed ID: 28437716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid detection of trace Cu
    Qi H; Zhao M; Liang H; Wu J; Huang Z; Hu A; Wang J; Lu Y; Zhang J
    Electrophoresis; 2019 Oct; 40(20):2699-2705. PubMed ID: 31172539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.