BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 27822698)

  • 61. A two-layer structure prediction framework for microscopy cell detection.
    Xu Y; Wu W; Chang EI; Chen D; Mu J; Lee PP; Blenman KR; Tu Z
    Comput Med Imaging Graph; 2015 Apr; 41():29-36. PubMed ID: 25082065
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mutual Information based hybrid model and deep learning for Acute Lymphocytic Leukemia detection in single cell blood smear images.
    Jha KK; Dutta HS
    Comput Methods Programs Biomed; 2019 Oct; 179():104987. PubMed ID: 31443862
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A reliable method for cell phenotype image classification.
    Nanni L; Lumini A
    Artif Intell Med; 2008 Jun; 43(2):87-97. PubMed ID: 18440791
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Note: An automated image analysis method for high-throughput classification of surface-bound bacterial cell motions.
    Shen S; Syal K; Tao N; Wang S
    Rev Sci Instrum; 2015 Dec; 86(12):126104. PubMed ID: 26724085
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Efficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network.
    Khan S; Sajjad M; Abbas N; Escorcia-Gutierrez J; Gamarra M; Muhammad K
    Comput Biol Med; 2024 May; 174():108146. PubMed ID: 38608320
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Lymphoma images analysis using morphological and non-morphological descriptors for classification.
    do Nascimento MZ; Martins AS; Azevedo Tosta TA; Neves LA
    Comput Methods Programs Biomed; 2018 Sep; 163():65-77. PubMed ID: 30119858
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Analyzing animal behavior via classifying each video frame using convolutional neural networks.
    Stern U; He R; Yang CH
    Sci Rep; 2015 Sep; 5():14351. PubMed ID: 26394695
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
    Pang S; Yu Z; Orgun MA
    Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Detection of temporal lobe epilepsy using support vector machines in multi-parametric quantitative MR imaging.
    Cantor-Rivera D; Khan AR; Goubran M; Mirsattari SM; Peters TM
    Comput Med Imaging Graph; 2015 Apr; 41():14-28. PubMed ID: 25103878
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Texture Descriptors Based on Dijkstra's Algorithm for Medical Image Analysis.
    Ghidoni S; Nanni L; Brahnam S; Menegatti E
    Stud Health Technol Inform; 2014; 207():74-82. PubMed ID: 25488213
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Adaptable texture-based segmentation by variance and intensity for automatic detection of semitranslucent and pink blush areas in basal cell carcinoma.
    Kefel S; Pelin Kefel S; LeAnder RW; Kaur R; Kasmi R; Mishra NK; Rader RK; Cole JG; Woolsey ZT; Stoecker WV
    Skin Res Technol; 2016 Nov; 22(4):412-422. PubMed ID: 26991418
    [TBL] [Abstract][Full Text] [Related]  

  • 72. An Efficient Approach for Automated Mass Segmentation and Classification in Mammograms.
    Dong M; Lu X; Ma Y; Guo Y; Ma Y; Wang K
    J Digit Imaging; 2015 Oct; 28(5):613-25. PubMed ID: 25776767
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Cytopathological image analysis using deep-learning networks in microfluidic microscopy.
    Gopakumar G; Hari Babu K; Mishra D; Gorthi SS; Sai Subrahmanyam GR
    J Opt Soc Am A Opt Image Sci Vis; 2017 Jan; 34(1):111-121. PubMed ID: 28059233
    [TBL] [Abstract][Full Text] [Related]  

  • 74. An improved computer vision method for white blood cells detection.
    Cuevas E; Díaz M; Manzanares M; Zaldivar D; Perez-Cisneros M
    Comput Math Methods Med; 2013; 2013():137392. PubMed ID: 23762178
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A new preprocessing approach for cell recognition.
    Long X; Cleveland WL; Yao YL
    IEEE Trans Inf Technol Biomed; 2005 Sep; 9(3):407-12. PubMed ID: 16167695
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Computer-aided diagnosis of early knee osteoarthritis based on MRI T2 mapping.
    Wu Y; Yang R; Jia S; Li Z; Zhou Z; Lou T
    Biomed Mater Eng; 2014; 24(6):3379-88. PubMed ID: 25227048
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Extraction of shift invariant wavelet features for classification of images with different sizes.
    Pun CM; Lee MC
    IEEE Trans Pattern Anal Mach Intell; 2004 Sep; 26(9):1228-33. PubMed ID: 15742897
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Comparing humans and deep learning performance for grading AMD: A study in using universal deep features and transfer learning for automated AMD analysis.
    Burlina P; Pacheco KD; Joshi N; Freund DE; Bressler NM
    Comput Biol Med; 2017 Mar; 82():80-86. PubMed ID: 28167406
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Intravital leukocyte detection using the gradient inverse coefficient of variation.
    Dong G; Ray N; Acton ST
    IEEE Trans Med Imaging; 2005 Jul; 24(7):910-24. PubMed ID: 16011321
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Simple method for high-performance digit recognition based on sparse coding.
    Labusch K; Barth E; Martinetz T
    IEEE Trans Neural Netw; 2008 Nov; 19(11):1985-9. PubMed ID: 19000969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.