These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27822891)

  • 1. Affine differential geometry and smoothness maximization as tools for identifying geometric movement primitives.
    Polyakov F
    Biol Cybern; 2017 Feb; 111(1):5-24. PubMed ID: 27822891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parabolic movement primitives and cortical states: merging optimality with geometric invariance.
    Polyakov F; Stark E; Drori R; Abeles M; Flash T
    Biol Cybern; 2009 Feb; 100(2):159-84. PubMed ID: 19152065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Affine differential geometry analysis of human arm movements.
    Flash T; Handzel AA
    Biol Cybern; 2007 Jun; 96(6):577-601. PubMed ID: 17406889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A compact representation of drawing movements with sequences of parabolic primitives.
    Polyakov F; Drori R; Ben-Shaul Y; Abeles M; Flash T
    PLoS Comput Biol; 2009 Jul; 5(7):e1000427. PubMed ID: 19578429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Movement timing and invariance arise from several geometries.
    Bennequin D; Fuchs R; Berthoz A; Flash T
    PLoS Comput Biol; 2009 Jul; 5(7):e1000426. PubMed ID: 19593380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex unconstrained three-dimensional hand movement and constant equi-affine speed.
    Maoz U; Berthoz A; Flash T
    J Neurophysiol; 2009 Feb; 101(2):1002-15. PubMed ID: 19073811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smoothness maximization along a predefined path accurately predicts the speed profiles of complex arm movements.
    Todorov E; Jordan MI
    J Neurophysiol; 1998 Aug; 80(2):696-714. PubMed ID: 9705462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Timing of continuous motor imagery: the two-thirds power law originates in trajectory planning.
    Karklinsky M; Flash T
    J Neurophysiol; 2015 Apr; 113(7):2490-9. PubMed ID: 25609105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The acquisition and implementation of the smoothness maximization motion strategy is dependent on spatial accuracy demands.
    Sosnik R; Flash T; Hauptmann B; Karni A
    Exp Brain Res; 2007 Jan; 176(2):311-31. PubMed ID: 16874514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial constant equi-affine speed and motion perception.
    Maoz U; Flash T
    J Neurophysiol; 2014 Jan; 111(2):336-49. PubMed ID: 24108797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proximal-distal differences in movement smoothness reflect differences in biomechanics.
    Salmond LH; Davidson AD; Charles SK
    J Neurophysiol; 2017 Mar; 117(3):1239-1257. PubMed ID: 28003410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Moving slowly is hard for humans: limitations of dynamic primitives.
    Park SW; Marino H; Charles SK; Sternad D; Hogan N
    J Neurophysiol; 2017 Jul; 118(1):69-83. PubMed ID: 28356477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Riemannian geometric approach to human arm dynamics, movement optimization, and invariance.
    Biess A; Flash T; Liebermann DG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031927. PubMed ID: 21517543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The formation of trajectories during goal-oriented locomotion in humans. II. A maximum smoothness model.
    Pham QC; Hicheur H; Arechavaleta G; Laumond JP; Berthoz A
    Eur J Neurosci; 2007 Oct; 26(8):2391-403. PubMed ID: 17953626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the Cerebellum in the Construction of Functional and Geometrical Spaces.
    Langlois ET; Bennequin D; de Marco G
    Cerebellum; 2024 Apr; ():. PubMed ID: 38625534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The smoothness of unconstrained head movements is velocity-dependent.
    Vikne H; Bakke ES; Liestøl K; Sandbæk G; Vøllestad N
    Hum Mov Sci; 2013 Aug; 32(4):540-54. PubMed ID: 24054893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional arm movements at constant equi-affine speed.
    Pollick FE; Maoz U; Handzel AA; Giblin PJ; Sapiro G; Flash T
    Cortex; 2009 Mar; 45(3):325-39. PubMed ID: 18678364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The inactivation principle: mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements.
    Berret B; Darlot C; Jean F; Pozzo T; Papaxanthis C; Gauthier JP
    PLoS Comput Biol; 2008 Oct; 4(10):e1000194. PubMed ID: 18949023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A primitive-based representation of dance: modulations by experience and perceptual validity.
    Leh A; Endres D; Hegele M
    J Neurophysiol; 2023 Nov; 130(5):1214-1225. PubMed ID: 37820011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the analysis of movement smoothness.
    Balasubramanian S; Melendez-Calderon A; Roby-Brami A; Burdet E
    J Neuroeng Rehabil; 2015 Dec; 12():112. PubMed ID: 26651329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.