These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 27822891)

  • 21. Motor primitives--new data and future questions.
    Giszter SF
    Curr Opin Neurobiol; 2015 Aug; 33():156-65. PubMed ID: 25912883
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sample Entropy of Speed Power Spectrum as a Measure of Laparoscopic Surgical Instrument Trajectory Smoothness.
    Hutchins AR; Manson RJ; Zani S; Mann BP
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5410-5413. PubMed ID: 30441560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of emotion on movement smoothness during gait in healthy young adults.
    Kang GE; Gross MM
    J Biomech; 2016 Dec; 49(16):4022-4027. PubMed ID: 27823805
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toward a unifying framework for the modeling and identification of motor primitives.
    Chiovetto E; Salatiello A; d'Avella A; Giese MA
    Front Comput Neurosci; 2022; 16():926345. PubMed ID: 36172054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling discrete and rhythmic movements through motor primitives: a review.
    Degallier S; Ijspeert A
    Biol Cybern; 2010 Oct; 103(4):319-38. PubMed ID: 20697734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectrum of power laws for curved hand movements.
    Huh D; Sejnowski TJ
    Proc Natl Acad Sci U S A; 2015 Jul; 112(29):E3950-8. PubMed ID: 26150514
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomarkers for rhythmic and discrete dynamic primitives in locomotion.
    Moura Coelho R; Hirai H; Martins J; Krebs HI
    Sci Rep; 2022 Nov; 12(1):20165. PubMed ID: 36424422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compositionality in neural control: an interdisciplinary study of scribbling movements in primates.
    Abeles M; Diesmann M; Flash T; Geisel T; Herrmann M; Teicher M
    Front Comput Neurosci; 2013; 7():103. PubMed ID: 24062679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Planning maximally smooth hand movements constrained to nonplanar workspaces.
    Liebermann DG; Krasovsky T; Berman S
    J Mot Behav; 2008 Nov; 40(6):516-31. PubMed ID: 18980905
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A framework to identify structured behavioral patterns within rodent spatial trajectories.
    Donnarumma F; Prevete R; Maisto D; Fuscone S; Irvine EM; van der Meer MAA; Kemere C; Pezzulo G
    Sci Rep; 2021 Jan; 11(1):468. PubMed ID: 33432100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Model selection for the extraction of movement primitives.
    Endres DM; Chiovetto E; Giese MA
    Front Comput Neurosci; 2013; 7():185. PubMed ID: 24391580
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A vector-sum process produces curved aiming paths under rotated visual-motor mappings.
    Cunningham HA; Vardi I
    Biol Cybern; 1990; 64(2):117-28. PubMed ID: 2291900
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinematic properties of on-line error corrections in the monkey.
    Fishbach A; Roy SA; Bastianen C; Miller LE; Houk JC
    Exp Brain Res; 2005 Aug; 164(4):442-57. PubMed ID: 15940500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of an optimal control model of multi-joint arm movements.
    Lan N
    Biol Cybern; 1997 Feb; 76(2):107-17. PubMed ID: 9116076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intrinsic joint kinematic planning. II: hand-path predictions based on a Listing's plane constraint.
    Liebermann DG; Biess A; Gielen CC; Flash T
    Exp Brain Res; 2006 May; 171(2):155-73. PubMed ID: 16341525
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Motor skill acquisition during a balance task as a process of optimization of motor primitives.
    de Lemos Fonseca M; Daneault JF; Vergara-Diaz G; Quixadá AP; Souza de Oliveira E Torres ÂF; Pondé de Sena E; Bomfim Cruz Vieira JP; Bigogno Reis Cazeta B; Sotero Dos Santos V; da Cruz Figueiredo T; Peña N; Bonato P; Vivas Miranda JG
    Eur J Neurosci; 2020 May; 51(10):2082-2094. PubMed ID: 31846518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinematic representation of imposed forearm movements by pericruciate neurons (areas 4 and 3a) in the awake cat.
    Bedingham W; Tatton WG
    J Neurophysiol; 1985 Apr; 53(4):886-909. PubMed ID: 3998796
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements.
    Ben-Itzhak S; Karniel A
    Neural Comput; 2008 Mar; 20(3):779-812. PubMed ID: 18045017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Motor cortical activity during drawing movements: population representation during lemniscate tracing.
    Schwartz AB; Moran DW
    J Neurophysiol; 1999 Nov; 82(5):2705-18. PubMed ID: 10561439
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic primitives of motor behavior.
    Hogan N; Sternad D
    Biol Cybern; 2012 Dec; 106(11-12):727-39. PubMed ID: 23124919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.