These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 27824122)

  • 1. Real time monitoring of membrane GPCR reconstitution by plasmon waveguide resonance: on the role of lipids.
    Calmet P; De Maria M; Harté E; Lamb D; Serrano-Vega M; Jazayeri A; Tschammer N; Alves ID
    Sci Rep; 2016 Nov; 6():36181. PubMed ID: 27824122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Monitoring of GPCR Reconstitution and Ligand-Binding Activity by Plasmon Waveguide Resonance.
    Alves ID
    Methods Mol Biol; 2020; 2168():123-143. PubMed ID: 33582990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of G-Protein Coupled Receptor Signaling in Membrane Environment by Plasmon Waveguide Resonance.
    Alves ID; Lecomte S
    Acc Chem Res; 2019 Apr; 52(4):1059-1067. PubMed ID: 30865424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Techniques: plasmon-waveguide resonance (PWR) spectroscopy as a tool to study ligand-GPCR interactions.
    Tollin G; Salamon Z; Hruby VJ
    Trends Pharmacol Sci; 2003 Dec; 24(12):655-9. PubMed ID: 14654307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of plasmon waveguide resonance (PWR) spectroscopy for examining binding, signaling and lipid domain partitioning of membrane proteins.
    Hruby VJ; Alves I; Cowell S; Salamon Z; Tollin G
    Life Sci; 2010 Apr; 86(15-16):569-74. PubMed ID: 19281827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capture and reconstitution of G protein-coupled receptors on a biosensor surface.
    Stenlund P; Babcock GJ; Sodroski J; Myszka DG
    Anal Biochem; 2003 May; 316(2):243-50. PubMed ID: 12711346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of surface plasmon resonance imaging to monitoring G protein-coupled receptor signaling and its modulation in a heterologous expression system.
    Nonobe Y; Yokoyama T; Kamikubo Y; Yoshida S; Hisajima N; Shinohara H; Shiraishi Y; Sakurai T; Tabata T
    BMC Biotechnol; 2016 Apr; 16():36. PubMed ID: 27068216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow-mediated on-surface reconstitution of G-protein coupled receptors for applications in surface plasmon resonance biosensors.
    Karlsson OP; Löfås S
    Anal Biochem; 2002 Jan; 300(2):132-8. PubMed ID: 11779103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR analyses of the interaction between CCR5 and its ligand using functional reconstitution of CCR5 in lipid bilayers.
    Yoshiura C; Kofuku Y; Ueda T; Mase Y; Yokogawa M; Osawa M; Terashima Y; Matsushima K; Shimada I
    J Am Chem Soc; 2010 May; 132(19):6768-77. PubMed ID: 20423099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon-waveguide resonance (PWR) spectroscopy for directly viewing rates of GPCR/G-protein interactions and quantifying affinities.
    Hruby VJ; Tollin G
    Curr Opin Pharmacol; 2007 Oct; 7(5):507-14. PubMed ID: 17869585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chapter 6. Plasmon resonance methods in membrane protein biology applications to GPCR signaling.
    Salamon Z; Tollin G; Alves I; Hruby V
    Methods Enzymol; 2009; 461():123-46. PubMed ID: 19480917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time monitoring of binding events on a thermostabilized human A2A receptor embedded in a lipid bilayer by surface plasmon resonance.
    Bocquet N; Kohler J; Hug MN; Kusznir EA; Rufer AC; Dawson RJ; Hennig M; Ruf A; Huber W; Huber S
    Biochim Biophys Acta; 2015 May; 1848(5):1224-33. PubMed ID: 25725488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon Waveguide Resonance: Principles, Applications and Historical Perspectives on Instrument Development.
    Rascol E; Villette S; Harté E; Alves ID
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analyzing ligand and small molecule binding activity of solubilized GPCRs using biosensor technology.
    Navratilova I; Dioszegi M; Myszka DG
    Anal Biochem; 2006 Aug; 355(1):132-9. PubMed ID: 16762304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell membrane hybrid bilayers containing the G-protein-coupled receptor CCR5.
    Rao NM; Silin V; Ridge KD; Woodward JT; Plant AL
    Anal Biochem; 2002 Aug; 307(1):117-30. PubMed ID: 12137788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery.
    Patching SG
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt A):43-55. PubMed ID: 23665295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon-waveguide resonance spectroscopy: a new tool for investigating signal transduction by G-protein coupled receptors.
    Tollin G; Salamon Z; Cowell S; Hruby VJ
    Life Sci; 2003 Nov; 73(26):3307-11. PubMed ID: 14572873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into the molecular mechanisms of biomembrane structural changes and interactions by optical biosensor technology.
    Lee TH; Hirst DJ; Aguilar MI
    Biochim Biophys Acta; 2015 Sep; 1848(9):1868-85. PubMed ID: 26009270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon-waveguide resonance studies of ligand binding to the human beta 2-adrenergic receptor.
    Devanathan S; Yao Z; Salamon Z; Kobilka B; Tollin G
    Biochemistry; 2004 Mar; 43(11):3280-8. PubMed ID: 15023079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surveying GPCR solubilisation conditions using surface plasmon resonance.
    Navratilova IH; Aristotelous T; Bird LE; Hopkins AL
    Anal Biochem; 2018 Sep; 556():23-34. PubMed ID: 29908863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.