These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 27824122)

  • 21. Surveying GPCR solubilisation conditions using surface plasmon resonance.
    Navratilova IH; Aristotelous T; Bird LE; Hopkins AL
    Anal Biochem; 2018 Sep; 556():23-34. PubMed ID: 29908863
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface plasmon resonance for measuring interactions of proteins with lipid membranes.
    Hodnik V; Anderluh G
    Methods Mol Biol; 2013; 974():23-36. PubMed ID: 23404270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of surface-based assays for transmembrane proteins: selective immobilization of functional CCR5, a G protein-coupled receptor.
    Silin VI; Karlik EA; Ridge KD; Vanderah DJ
    Anal Biochem; 2006 Feb; 349(2):247-53. PubMed ID: 16298323
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Different structural states of the proteolipid membrane are produced by ligand binding to the human delta-opioid receptor as shown by plasmon-waveguide resonance spectroscopy.
    Alves ID; Cowell SM; Salamon Z; Devanathan S; Tollin G; Hruby VJ
    Mol Pharmacol; 2004 May; 65(5):1248-57. PubMed ID: 15102953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calorimetric quantification of linked equilibria in cyclodextrin/lipid/detergent mixtures for membrane-protein reconstitution.
    Textor M; Vargas C; Keller S
    Methods; 2015 Apr; 76():183-193. PubMed ID: 25583305
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides.
    Papo N; Shai Y
    Biochemistry; 2003 Jan; 42(2):458-66. PubMed ID: 12525173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GPCR-styrene maleic acid lipid particles (GPCR-SMALPs): their nature and potential.
    Wheatley M; Charlton J; Jamshad M; Routledge SJ; Bailey S; La-Borde PJ; Azam MT; Logan RT; Bill RM; Dafforn TR; Poyner DR
    Biochem Soc Trans; 2016 Apr; 44(2):619-23. PubMed ID: 27068979
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface Plasmon Resonance for Measuring Interactions of Proteins with Lipids and Lipid Membranes.
    Šakanovič A; Hodnik V; Anderluh G
    Methods Mol Biol; 2019; 2003():53-70. PubMed ID: 31218613
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface plasmon resonance study of g protein/receptor coupling in a lipid bilayer-free system.
    Komolov KE; Senin II; Philippov PP; Koch KW
    Anal Chem; 2006 Feb; 78(4):1228-34. PubMed ID: 16478116
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lipid modulation of early G protein-coupled receptor signalling events.
    Dijkman PM; Watts A
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2889-97. PubMed ID: 26275588
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmon-waveguide resonance spectroscopy studies of lateral segregation in solid-supported proteolipid bilayers.
    Salamon Z; Devanathan S; Tollin G
    Methods Mol Biol; 2007; 398():159-78. PubMed ID: 18214380
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of G protein-coupled receptor-mediated cellular response involved in cytoskeletal rearrangement using surface plasmon resonance.
    Chen K; Obinata H; Izumi T
    Biosens Bioelectron; 2010 Mar; 25(7):1675-80. PubMed ID: 20044245
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface plasmon resonance analysis of seven-transmembrane receptors.
    Aristotelous T; Hopkins AL; Navratilova I
    Methods Enzymol; 2015; 556():499-525. PubMed ID: 25857797
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binding assays with artificial tethered membranes using surface plasmon resonance.
    Wiltschi B; Knoll W; Sinner EK
    Methods; 2006 Jun; 39(2):134-46. PubMed ID: 16857384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing the kinetics of lipid membrane formation and the interaction of a nontoxic and a toxic amyloid with plasmon waveguide resonance.
    Harté E; Maalouli N; Shalabney A; Texier E; Berthelot K; Lecomte S; Alves ID
    Chem Commun (Camb); 2014 Apr; 50(32):4168-71. PubMed ID: 24618747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective toxin-lipid membrane interactions of natural, haemolytic Scyphozoan toxins analyzed by surface plasmon resonance.
    Helmholz H
    Biochim Biophys Acta; 2010 Oct; 1798(10):1944-52. PubMed ID: 20599534
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphatidylethanolamine enhances rhodopsin photoactivation and transducin binding in a solid supported lipid bilayer as determined using plasmon-waveguide resonance spectroscopy.
    Alves ID; Salgado GF; Salamon Z; Brown MF; Tollin G; Hruby VJ
    Biophys J; 2005 Jan; 88(1):198-210. PubMed ID: 15501933
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmon-waveguide resonance studies of ligand binding to integral proteins in membrane fragments derived from bacterial and mammalian cells.
    Salamon Z; Fitch J; Cai M; Tumati S; Navratilova E; Tollin G
    Anal Biochem; 2009 Apr; 387(1):95-101. PubMed ID: 19454250
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional studies with membrane-bound and detergent-solubilized alpha2-adrenergic receptors expressed in Sf9 cells.
    Sen S; Jaakola VP; Pirilä P; Finel M; Goldman A
    Biochim Biophys Acta; 2005 Jun; 1712(1):62-70. PubMed ID: 15893292
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ligand modulation of lateral segregation of a G-protein-coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers.
    Alves ID; Salamon Z; Hruby VJ; Tollin G
    Biochemistry; 2005 Jun; 44(25):9168-78. PubMed ID: 15966741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.