These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 27824132)
1. Laser Printing of Superhydrophobic Patterns from Mixtures of Hydrophobic Silica Nanoparticles and Toner Powder. Ngo CV; Chun DM Sci Rep; 2016 Nov; 6():36735. PubMed ID: 27824132 [TBL] [Abstract][Full Text] [Related]
2. Functional toner for office laser printer and its application for printing of paper-based superwettable patterns and devices. Liu Y; Liu X; Chen J; Zhang Z; Feng L Sci Rep; 2023 Aug; 13(1):12592. PubMed ID: 37537193 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation. Sasmal AK; Mondal C; Sinha AK; Gauri SS; Pal J; Aditya T; Ganguly M; Dey S; Pal T ACS Appl Mater Interfaces; 2014 Dec; 6(24):22034-43. PubMed ID: 25419984 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of Transparent and Microstructured Superhydrophobic Substrates Using Additive Manufacturing. Aldhaleai A; Tsai PA Langmuir; 2021 Jan; 37(1):348-356. PubMed ID: 33377783 [TBL] [Abstract][Full Text] [Related]
5. Direct Write Printing of Ultraviolet-Curable Bulk Superhydrophobic Ink Material. Jiang R; Li Y; Chao S; Chen Y; Shao H; Guo Y; Wang X; Tang C ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37879068 [TBL] [Abstract][Full Text] [Related]
6. Bioinspired Multifunctional Superhydrophobic Surfaces with Carbon-Nanotube-Based Conducting Pastes by Facile and Scalable Printing. Han JT; Kim BK; Woo JS; Jang JI; Cho JY; Jeong HJ; Jeong SY; Seo SH; Lee GW ACS Appl Mater Interfaces; 2017 Mar; 9(8):7780-7786. PubMed ID: 28155268 [TBL] [Abstract][Full Text] [Related]
7. Characterization of microchip electrophoresis devices fabricated by direct-printing process with colored toner. Gabriel EF; do Lago CL; Gobbi ÅL; Carrilho E; Coltro WK Electrophoresis; 2013 Aug; 34(15):2169-76. PubMed ID: 23712918 [TBL] [Abstract][Full Text] [Related]
8. Self-cleaning superhydrophobic epoxy coating based on fibrous silica-coated iron oxide magnetic nanoparticles. Alamri H; Al-Shahrani A; Bovero E; Khaldi T; Alabedi G; Obaid W; Al-Taie I; Fihri A J Colloid Interface Sci; 2018 Mar; 513():349-356. PubMed ID: 29169024 [TBL] [Abstract][Full Text] [Related]
9. 3D Printing of Superhydrophobic Objects with Bulk Nanostructure. Dong Z; Vuckovac M; Cui W; Zhou Q; Ras RHA; Levkin PA Adv Mater; 2021 Nov; 33(45):e2106068. PubMed ID: 34580937 [TBL] [Abstract][Full Text] [Related]
10. A Facile Way to Fabricate Transparent Superhydrophobic Surfaces. Shi W; He R; Yunus DE; Yang J; Liu Y J Nanosci Nanotechnol; 2018 Jul; 18(7):5082-5087. PubMed ID: 29442697 [TBL] [Abstract][Full Text] [Related]
11. Facile spray-coating process for the fabrication of tunable adhesive superhydrophobic surfaces with heterogeneous chemical compositions used for selective transportation of microdroplets with different volumes. Li J; Jing Z; Zha F; Yang Y; Wang Q; Lei Z ACS Appl Mater Interfaces; 2014 Jun; 6(11):8868-77. PubMed ID: 24807195 [TBL] [Abstract][Full Text] [Related]
12. Robust Superhydrophobicity through Surface Defects from Laser Powder Bed Fusion Additive Manufacturing. Kan L; Zhang L; Wang P; Liu Q; Wang J; Su B; Song B; Shi Y Biomimetics (Basel); 2023 Dec; 8(8):. PubMed ID: 38132537 [TBL] [Abstract][Full Text] [Related]
13. Facile fabrication of micro-/nanostructured, superhydrophobic membranes with adjustable porosity by 3D printing. Mayoussi F; Doeven EH; Kick A; Goralczyk A; Thomann Y; Risch P; Guijt RM; Kotz F; Helmer D; Rapp BE J Mater Chem A Mater; 2021 Sep; 9(37):21379-21386. PubMed ID: 34603732 [TBL] [Abstract][Full Text] [Related]