BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 27824132)

  • 1. Laser Printing of Superhydrophobic Patterns from Mixtures of Hydrophobic Silica Nanoparticles and Toner Powder.
    Ngo CV; Chun DM
    Sci Rep; 2016 Nov; 6():36735. PubMed ID: 27824132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional toner for office laser printer and its application for printing of paper-based superwettable patterns and devices.
    Liu Y; Liu X; Chen J; Zhang Z; Feng L
    Sci Rep; 2023 Aug; 13(1):12592. PubMed ID: 37537193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.
    Sasmal AK; Mondal C; Sinha AK; Gauri SS; Pal J; Aditya T; Ganguly M; Dey S; Pal T
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22034-43. PubMed ID: 25419984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Transparent and Microstructured Superhydrophobic Substrates Using Additive Manufacturing.
    Aldhaleai A; Tsai PA
    Langmuir; 2021 Jan; 37(1):348-356. PubMed ID: 33377783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Write Printing of Ultraviolet-Curable Bulk Superhydrophobic Ink Material.
    Jiang R; Li Y; Chao S; Chen Y; Shao H; Guo Y; Wang X; Tang C
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37879068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired Multifunctional Superhydrophobic Surfaces with Carbon-Nanotube-Based Conducting Pastes by Facile and Scalable Printing.
    Han JT; Kim BK; Woo JS; Jang JI; Cho JY; Jeong HJ; Jeong SY; Seo SH; Lee GW
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7780-7786. PubMed ID: 28155268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printing of Superhydrophobic Objects with Bulk Nanostructure.
    Dong Z; Vuckovac M; Cui W; Zhou Q; Ras RHA; Levkin PA
    Adv Mater; 2021 Nov; 33(45):e2106068. PubMed ID: 34580937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of microchip electrophoresis devices fabricated by direct-printing process with colored toner.
    Gabriel EF; do Lago CL; Gobbi ÅL; Carrilho E; Coltro WK
    Electrophoresis; 2013 Aug; 34(15):2169-76. PubMed ID: 23712918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-cleaning superhydrophobic epoxy coating based on fibrous silica-coated iron oxide magnetic nanoparticles.
    Alamri H; Al-Shahrani A; Bovero E; Khaldi T; Alabedi G; Obaid W; Al-Taie I; Fihri A
    J Colloid Interface Sci; 2018 Mar; 513():349-356. PubMed ID: 29169024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Facile Way to Fabricate Transparent Superhydrophobic Surfaces.
    Shi W; He R; Yunus DE; Yang J; Liu Y
    J Nanosci Nanotechnol; 2018 Jul; 18(7):5082-5087. PubMed ID: 29442697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile spray-coating process for the fabrication of tunable adhesive superhydrophobic surfaces with heterogeneous chemical compositions used for selective transportation of microdroplets with different volumes.
    Li J; Jing Z; Zha F; Yang Y; Wang Q; Lei Z
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8868-77. PubMed ID: 24807195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust Superhydrophobicity through Surface Defects from Laser Powder Bed Fusion Additive Manufacturing.
    Kan L; Zhang L; Wang P; Liu Q; Wang J; Su B; Song B; Shi Y
    Biomimetics (Basel); 2023 Dec; 8(8):. PubMed ID: 38132537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile fabrication of micro-/nanostructured, superhydrophobic membranes with adjustable porosity by 3D printing.
    Mayoussi F; Doeven EH; Kick A; Goralczyk A; Thomann Y; Risch P; Guijt RM; Kotz F; Helmer D; Rapp BE
    J Mater Chem A Mater; 2021 Sep; 9(37):21379-21386. PubMed ID: 34603732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superhydrophobic hybrid inorganic-organic thiol-ene surfaces fabricated via spray-deposition and photopolymerization.
    Sparks BJ; Hoff EF; Xiong L; Goetz JT; Patton DL
    ACS Appl Mater Interfaces; 2013 Mar; 5(5):1811-7. PubMed ID: 23410965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and Characterization of Superhydrophobic, Self-cleaning NIR-reflective Silica Nanoparticles.
    Sriramulu D; Reed EL; Annamalai M; Venkatesan TV; Valiyaveettil S
    Sci Rep; 2016 Nov; 6():35993. PubMed ID: 27824064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of Commercial Polymer Coatings for Superhydrophobic Applications.
    Cassidy SS; Page K; Reyes CIL; Allan E; Parkin IP; Carmalt CJ
    ACS Omega; 2024 Feb; 9(6):7154-7162. PubMed ID: 38371809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of Self-Cleaning and Anti-Icing Durable Surface on Glass.
    Zuo Z; Liao R; Guo C; Zhao X; Zhuang A; Yuan Y
    J Nanosci Nanotechnol; 2017 Jan; 17(1):420-26. PubMed ID: 29624039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembled nanomanipulation of silica nanoparticles enable mechanochemically robust super hydrophobic and oleophilic textile.
    Anjum AS; Ali M; Sun KC; Riaz R; Jeong SH
    J Colloid Interface Sci; 2020 Mar; 563():62-73. PubMed ID: 31865049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Self-Cleaning and Anti-Icing Durable Surface on Glass.
    Zuo Z; Liao R; Guo C; Zhao X; Zhuang A; Yuan Y
    J Nanosci Nanotechnol; 2017 Jan; 17(1):420-26. PubMed ID: 29624290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of Self-Healable, Robust Superhydrophobic Surfaces Using UV-Crosslinked Nanocomposite Films.
    Park YA; Ha YG
    J Nanosci Nanotechnol; 2021 Dec; 21(12):6212-6216. PubMed ID: 34229823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.