These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 27824132)

  • 41. Laser-printing of toner-based 96-microzone plates for immunoassays.
    Oliveira KA; Rodrigues de Oliveira C; Antonelli da Silveira L; Coltro WK
    Analyst; 2013 Feb; 138(4):1114-21. PubMed ID: 23248817
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Flexible Teflon nanocone array surfaces with tunable superhydrophobicity for self-cleaning and aqueous droplet patterning.
    Toma M; Loget G; Corn RM
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11110-7. PubMed ID: 24654844
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces.
    Xu W; Song J; Sun J; Lu Y; Yu Z
    ACS Appl Mater Interfaces; 2011 Nov; 3(11):4404-14. PubMed ID: 22008385
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Superhydrophobic-superhydrophilic binary micropatterns by localized thermal treatment of polyhedral oligomeric silsesquioxane (POSS)-silica films.
    Schutzius TM; Bayer IS; Jursich GM; Das A; Megaridis CM
    Nanoscale; 2012 Sep; 4(17):5378-85. PubMed ID: 22820974
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles.
    Xu L; Karunakaran RG; Guo J; Yang S
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):1118-25. PubMed ID: 22292419
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Percolation-dominated superhydrophobicity and conductivity for nanocomposite coatings from the mixtures of a commercial aqueous silica sol and functionalized carbon nanotubes.
    Peng M; Guo H; Liao Z; Qi J; Zhou Z; Fang Z; Shen L
    J Colloid Interface Sci; 2012 Feb; 367(1):225-33. PubMed ID: 22056263
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Self-cleaning superhydrophobic nanocomposite surfaces generated by laser pulse heating.
    Maurer JA; Miller MJ; Bartolucci SF
    J Colloid Interface Sci; 2018 Aug; 524():204-208. PubMed ID: 29655138
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Scalable fabrication of superhydrophobic hierarchical colloidal arrays.
    Yang H; Jiang P
    J Colloid Interface Sci; 2010 Dec; 352(2):558-65. PubMed ID: 20850756
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Imparting superhydrophobic and biocidal functionalities to a polymeric substrate by the sonochemical method.
    Svirinovsky A; Perelshtein I; Natan M; Banin E; Gedanken A
    Ultrason Sonochem; 2018 Jun; 44():398-403. PubMed ID: 29680626
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surfaces with Sustainable Superhydrophobicity upon Mechanical Abrasion.
    Bai X; Xue CH; Jia ST
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):28171-28179. PubMed ID: 27668829
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Towards Rapid Fabrication of Superhydrophobic Surfaces by Multi-Beam Nanostructuring with 40,401 Beams.
    Hauschwitz P; Bičštová R; Brodsky A; Kaplan N; Cimrman M; Huynh J; Brajer J; Rostohar D; Kopeček J; Smrž M; Mocek T
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443819
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fabrication of superhydrophobic bionic surface integrating with VOF simulation studies of liquid drop impacting.
    Liu C; Zhu L; Li J; Liang Y
    Microsc Res Tech; 2019 May; 82(5):615-623. PubMed ID: 30666735
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces.
    Heydari G; Sedighi Moghaddam M; Tuominen M; Fielden M; Haapanen J; Mäkelä JM; Claesson PM
    J Colloid Interface Sci; 2016 Apr; 468():21-33. PubMed ID: 26821148
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Toner Savings Based on Quasi-Random Sequences and a Perceptual Study for Green Printing.
    Montrucchio B; Ferrero R
    IEEE Trans Image Process; 2016 May; 25(5):2635-46. PubMed ID: 27116672
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis of monodisperse fluorinated silica nanoparticles and their superhydrophobic thin films.
    Brassard JD; Sarkar DK; Perron J
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3583-8. PubMed ID: 21870871
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fabrication of sticky and slippery superhydrophobic surfaces via spin-coating silica nanoparticles onto flat/patterned substrates.
    Cho KH; Chen LJ
    Nanotechnology; 2011 Nov; 22(44):445706. PubMed ID: 21979566
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Patterning a Superhydrophobic Area on a Facile Fabricated Superhydrophilic Layer Based on an Inkjet-Printed Water-Soluble Polymer Template.
    Sun J; Li Y; Liu G; Chu F; Chen C; Zhang Y; Tian H; Song Y
    Langmuir; 2020 Aug; 36(33):9952-9959. PubMed ID: 32787129
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness.
    Zhang Y; Ge D; Yang S
    J Colloid Interface Sci; 2014 Jun; 423():101-7. PubMed ID: 24703674
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing.
    Manca M; Cannavale A; De Marco L; Aricò AS; Cingolani R; Gigli G
    Langmuir; 2009 Jun; 25(11):6357-62. PubMed ID: 19466786
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Environmentally Benign Production of Stretchable and Robust Superhydrophobic Silicone Monoliths.
    Davis A; Surdo S; Caputo G; Bayer IS; Athanassiou A
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2907-2917. PubMed ID: 29286629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.