These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS Su S; Cao W; Liu W; Lu Z; Zhu D; Chao J; Weng L; Wang L; Fan C; Wang L Biosens Bioelectron; 2017 Aug; 94():552-559. PubMed ID: 28363193 [TBL] [Abstract][Full Text] [Related]
3. An integrated dual functional recognition/amplification bio-label for the one-step impedimetric detection of Micro-RNA-21. Azzouzi S; Mak WC; Kor K; Turner APF; Ali MB; Beni V Biosens Bioelectron; 2017 Jun; 92():154-161. PubMed ID: 28213328 [TBL] [Abstract][Full Text] [Related]
4. Amplified electrochemical detection of nucleic acid hybridization via selective preconcentration of unmodified gold nanoparticles. Li Y; Tian R; Zheng X; Huang R Anal Chim Acta; 2016 Aug; 934():59-65. PubMed ID: 27506344 [TBL] [Abstract][Full Text] [Related]
5. Double-loop hairpin probe and doxorubicin-loaded gold nanoparticles for the ultrasensitive electrochemical sensing of microRNA. Tao Y; Yin D; Jin M; Fang J; Dai T; Li Y; Li Y; Pu Q; Xie G Biosens Bioelectron; 2017 Oct; 96():99-105. PubMed ID: 28475957 [TBL] [Abstract][Full Text] [Related]
6. Colorimetric and fluorescent dual-mode detection of microRNA based on duplex-specific nuclease assisted gold nanoparticle amplification. Huang J; Shangguan J; Guo Q; Ma W; Wang H; Jia R; Ye Z; He X; Wang K Analyst; 2019 Aug; 144(16):4917-4924. PubMed ID: 31313769 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical biosensor for miRNA-21 based on gold-platinum bimetallic nanoparticles coated 3-aminopropyltriethoxy silane. Bharti A; Mittal S; Rana S; Dahiya D; Agnihotri N; Prabhakar N Anal Biochem; 2020 Nov; 609():113908. PubMed ID: 32818505 [TBL] [Abstract][Full Text] [Related]
8. Sensitive detection of microRNAs based on the conversion of colorimetric assay into electrochemical analysis with duplex-specific nuclease-assisted signal amplification. Xia N; Liu K; Zhou Y; Li Y; Yi X Int J Nanomedicine; 2017; 12():5013-5022. PubMed ID: 28761341 [TBL] [Abstract][Full Text] [Related]
9. Competitive RNA-RNA hybridization-based integrated nanostructured-disposable electrode for highly sensitive determination of miRNAs in cancer cells. Zouari M; Campuzano S; Pingarrón JM; Raouafi N Biosens Bioelectron; 2017 May; 91():40-45. PubMed ID: 27987409 [TBL] [Abstract][Full Text] [Related]
10. A regenerating self-assembled gold nanoparticle-containing electrochemical impedance sensor. Mahmoud AM; Tang T; Harrison DJ; Lee WE; Jemere AB Biosens Bioelectron; 2014 Jun; 56():328-33. PubMed ID: 24530834 [TBL] [Abstract][Full Text] [Related]
11. Sensitive electrochemical biosensor for MicroRNAs based on duplex-specific nuclease-assisted target recycling followed with gold nanoparticles and enzymatic signal amplification. Zhang H; Fan M; Jiang J; Shen Q; Cai C; Shen J Anal Chim Acta; 2019 Aug; 1064():33-39. PubMed ID: 30982515 [TBL] [Abstract][Full Text] [Related]
12. Simple, sensitive and label-free electrochemical detection of microRNAs based on the in situ formation of silver nanoparticles aggregates for signal amplification. Liu L; Chang Y; Xia N; Peng P; Zhang L; Jiang M; Zhang J; Liu L Biosens Bioelectron; 2017 Aug; 94():235-242. PubMed ID: 28285201 [TBL] [Abstract][Full Text] [Related]
13. An electrochemical microRNAs biosensor with the signal amplification of alkaline phosphatase and electrochemical-chemical-chemical redox cycling. Xia N; Zhang Y; Wei X; Huang Y; Liu L Anal Chim Acta; 2015 Jun; 878():95-101. PubMed ID: 26002330 [TBL] [Abstract][Full Text] [Related]
14. Chemical binding of pyrrolidinyl peptide nucleic acid (acpcPNA-T9) probe with AuNPs toward label-free monitoring of miRNA-21: A novel biosensing platform for biomedical analysis and POC diagnostics. Fathi N; Saadati A; Hasanzadeh M; Samiei M J Mol Recognit; 2021 Aug; 34(8):e2893. PubMed ID: 33822429 [TBL] [Abstract][Full Text] [Related]
15. On-Electrode Synthesis of Shape-Controlled Hierarchical Flower-Like Gold Nanostructures for Efficient Interfacial DNA Assembly and Sensitive Electrochemical Sensing of MicroRNA. Su S; Wu Y; Zhu D; Chao J; Liu X; Wan Y; Su Y; Zuo X; Fan C; Wang L Small; 2016 Jul; 12(28):3794-801. PubMed ID: 27305644 [TBL] [Abstract][Full Text] [Related]
16. Improving impedimetric nucleic acid detection by using enzyme-decorated liposomes and nanostructured screen-printed electrodes. Voccia D; Bettazzi F; Fratini E; Berti D; Palchetti I Anal Bioanal Chem; 2016 Oct; 408(26):7271-81. PubMed ID: 27178553 [TBL] [Abstract][Full Text] [Related]
17. Cascade Amplification-Mediated In Situ Hot-Spot Assembly for MicroRNA Detection and Molecular Logic Gate Operations. Yu S; Wang Y; Jiang LP; Bi S; Zhu JJ Anal Chem; 2018 Apr; 90(7):4544-4551. PubMed ID: 29570270 [TBL] [Abstract][Full Text] [Related]
18. Poly(A) Extensions of miRNAs for Amplification-Free Electrochemical Detection on Screen-Printed Gold Electrodes. Koo KM; Carrascosa LG; Shiddiky MJ; Trau M Anal Chem; 2016 Feb; 88(4):2000-5. PubMed ID: 26814930 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical detection of lung cancer specific microRNAs using 3D DNA origami nanostructures. Liu S; Su W; Li Z; Ding X Biosens Bioelectron; 2015 Sep; 71():57-61. PubMed ID: 25884735 [TBL] [Abstract][Full Text] [Related]
20. Attomolar detection of BRCA1 gene based on gold nanoparticle assisted signal amplification. Abdul Rasheed P; Sandhyarani N Biosens Bioelectron; 2015 Mar; 65():333-40. PubMed ID: 25461178 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]