These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. The calcium silicate/alginate composite: preparation and evaluation of its behavior as bioactive injectable hydrogels. Han Y; Zeng Q; Li H; Chang J Acta Biomater; 2013 Nov; 9(11):9107-17. PubMed ID: 23796407 [TBL] [Abstract][Full Text] [Related]
9. Injectable 3D hydrogel scaffold with tailorable porosity post-implantation. Al-Abboodi A; Fu J; Doran PM; Tan TT; Chan PP Adv Healthc Mater; 2014 May; 3(5):725-36. PubMed ID: 24151286 [TBL] [Abstract][Full Text] [Related]
10. High porosity PEG-based hydrogel foams with self-tuning moisture balance as chronic wound dressings. Lan Z; Kar R; Chwatko M; Shoga E; Cosgriff-Hernandez E J Biomed Mater Res A; 2023 Apr; 111(4):465-477. PubMed ID: 36606332 [TBL] [Abstract][Full Text] [Related]
11. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Griffin DR; Weaver WM; Scumpia PO; Di Carlo D; Segura T Nat Mater; 2015 Jul; 14(7):737-44. PubMed ID: 26030305 [TBL] [Abstract][Full Text] [Related]
12. A novel design of injectable porous hydrogels with in situ pore formation. Yom-Tov O; Neufeld L; Seliktar D; Bianco-Peled H Acta Biomater; 2014 Oct; 10(10):4236-46. PubMed ID: 25034645 [TBL] [Abstract][Full Text] [Related]
13. Injectable and adhesive hydrogels for dealing with wounds. Ghandforoushan P; Golafshan N; Babu Kadumudi F; Castilho M; Dolatshahi-Pirouz A; Orive G Expert Opin Biol Ther; 2022 Apr; 22(4):519-533. PubMed ID: 34793282 [TBL] [Abstract][Full Text] [Related]
14. In situ forming injectable hydrogels for drug delivery and wound repair. Dimatteo R; Darling NJ; Segura T Adv Drug Deliv Rev; 2018 Mar; 127():167-184. PubMed ID: 29567395 [TBL] [Abstract][Full Text] [Related]
15. Injectable polyurethane composite scaffolds delay wound contraction and support cellular infiltration and remodeling in rat excisional wounds. Adolph EJ; Hafeman AE; Davidson JM; Nanney LB; Guelcher SA J Biomed Mater Res A; 2012 Feb; 100(2):450-61. PubMed ID: 22105887 [TBL] [Abstract][Full Text] [Related]
16. The role of pore size on vascularization and tissue remodeling in PEG hydrogels. Chiu YC; Cheng MH; Engel H; Kao SW; Larson JC; Gupta S; Brey EM Biomaterials; 2011 Sep; 32(26):6045-51. PubMed ID: 21663958 [TBL] [Abstract][Full Text] [Related]
17. Biomimetic hybrid porous scaffolds immobilized with platelet derived growth factor-BB promote cellularization and vascularization in tissue engineering. Murali R; Ponrasu T; Cheirmadurai K; Thanikaivelan P J Biomed Mater Res A; 2016 Feb; 104(2):388-96. PubMed ID: 26414915 [TBL] [Abstract][Full Text] [Related]
18. Design of an elastic porous injectable biomaterial for tissue regeneration and volume retention. Béduer A; Genta M; Kunz N; Verheyen C; Martins M; Brefie-Guth J; Braschler T Acta Biomater; 2022 Apr; 142():73-84. PubMed ID: 35101581 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of soft tissue coverage over porous polymethylmethacrylate space maintainers within nonhealing alveolar bone defects. Kretlow JD; Shi M; Young S; Spicer PP; Demian N; Jansen JA; Wong ME; Kasper FK; Mikos AG Tissue Eng Part C Methods; 2010 Dec; 16(6):1427-38. PubMed ID: 20524844 [TBL] [Abstract][Full Text] [Related]
20. A review: fabrication of porous polyurethane scaffolds. Janik H; Marzec M Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():586-91. PubMed ID: 25579961 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]