These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 2782446)

  • 41. Vascular load defined by the aortic input impedance spectrum.
    Nichols WW; Pepine CJ; Geiser EA; Conti CR
    Fed Proc; 1980 Feb; 39(2):196-201. PubMed ID: 7353677
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Autoregressive analysis of aortic input impedance: comparison with Fourier transform.
    Kubota T; Itaya R; Alexander J; Todaka K; Sugimachi M; Sunagawa K
    Am J Physiol; 1991 Mar; 260(3 Pt 2):H998-1002. PubMed ID: 2000993
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydraulic input impedance measurements in physical models of the arterial wall.
    Papageorgiou GL; Jones NB
    J Biomed Eng; 1989 Nov; 11(6):471-7. PubMed ID: 2811346
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Energetically wasteful wave reflections due to impedance mismatching in hypertension and their reversal with vasodilator: Time and frequency domain evaluations.
    Kaya M; Balasubramanian V; Ge Y; Li JK
    Comput Biol Med; 2019 Jan; 104():117-126. PubMed ID: 30472494
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The input impedance of the peripheral vascular termination in skeletal muscle.
    Bauer RD; Busse R; Schabert A
    Pflugers Arch; 1985 Mar; 403(3):308-11. PubMed ID: 3991335
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two-Element Fractional-Order Windkessel Model to Assess the Arterial Input Impedance.
    Bahloul MA; Laleg Kirati TM
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5018-5023. PubMed ID: 31946987
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pressure and Flow Relations in the Systemic Arterial Tree Throughout Development From Newborn to Adult.
    Westerhof BE; van Gemert MJC; van den Wijngaard JP
    Front Pediatr; 2020; 8():251. PubMed ID: 32509713
    [No Abstract]   [Full Text] [Related]  

  • 48. Assessment of Fractional-Order Arterial Windkessel as a Model of Aortic Input Impedance.
    Bahloul MA; Laleg-Kirati TM
    IEEE Open J Eng Med Biol; 2020; 1():123-132. PubMed ID: 35402942
    [No Abstract]   [Full Text] [Related]  

  • 49. Impedance and wave reflection in arterial system: simulation with geometrically tapered T-tubes.
    Chang KC; Tseng YZ; Kuo TS; Chen HI
    Med Biol Eng Comput; 1995 Sep; 33(5):652-60. PubMed ID: 8523906
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analytical relationship between arterial input impedance and the three-element Windkessel series resistance.
    Gnudi G
    Med Biol Eng Comput; 1998 Jul; 36(4):480-4. PubMed ID: 10198533
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Input impedance of the lower abdominal aorta in chronically instrumented fetal sheep.
    Schröder H; Cetin E; Hüneke B; Carstensen M
    Circ Res; 1994 Apr; 74(4):641-9. PubMed ID: 8137500
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fast estimation of arterial vascular parameters for transient and steady beats with application to hemodynamic state under variant gravitational conditions.
    Essler S; Schroeder MJ; Phaniraj V; Koenig SC; Latham RD; Ewert D
    Ann Biomed Eng; 1999; 27(4):486-97. PubMed ID: 10468233
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Normalization of hemodynamic parameters: application to vascular resistance and impedance.
    Liu ZR; Yin FC
    Am J Physiol; 1987 Apr; 252(4 Pt 2):R710-9. PubMed ID: 3565602
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Arterial repair and atherosclerosis after mechanical injury. I. Permeability and light microscopic characteristics of endothelium in non-atherosclerotic and atherosclerotic lesions.
    Björkerud S; Bondjers G
    Atherosclerosis; 1971; 13(3):355-63. PubMed ID: 5119236
    [No Abstract]   [Full Text] [Related]  

  • 55. Volume elasticity, modulus of elasticity and compliance of normal and arteriosclerotic human aorta.
    Richter HA; Mittermayer C
    Biorheology; 1984; 21(5):723-34. PubMed ID: 6518285
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High frequency characteristics of the arterial system.
    Newman DL; Sipkema P; Greenwald SE; Westerhof N
    J Biomech; 1986; 19(10):817-24. PubMed ID: 3782164
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Determination of arterial input impedance spectra from non-invasively recorded pulses.
    Pasch Th; Bauer RD; Busse R
    Basic Res Cardiol; 1976; 71(3):229-42. PubMed ID: 938435
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of arterial design on pulse wave reflection in a fractal pulmonary network.
    Bennett SH; Goetzman BW; Milstein JM; Pannu JS
    J Appl Physiol (1985); 1996 Mar; 80(3):1033-56. PubMed ID: 8964721
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pulse wave numerical analysis.
    Puls RJ; Heizer KW
    Med Hypotheses; 1996 Mar; 46(3):276-80. PubMed ID: 8676766
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of embryonic aortic impedance with lumped parameter models.
    Yoshigi M; Keller BB
    Am J Physiol; 1997 Jul; 273(1 Pt 2):H19-27. PubMed ID: 9249470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.