These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 27824476)
1. Resonant Optomechanics with a Vibrating Carbon Nanotube and a Radio-Frequency Cavity. Ares N; Pei T; Mavalankar A; Mergenthaler M; Warner JH; Briggs GA; Laird EA Phys Rev Lett; 2016 Oct; 117(17):170801. PubMed ID: 27824476 [TBL] [Abstract][Full Text] [Related]
2. Coupling microwave photons to a mechanical resonator using quantum interference. Rodrigues IC; Bothner D; Steele GA Nat Commun; 2019 Nov; 10(1):5359. PubMed ID: 31767836 [TBL] [Abstract][Full Text] [Related]
3. Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity. Singh V; Bosman SJ; Schneider BH; Blanter YM; Castellanos-Gomez A; Steele GA Nat Nanotechnol; 2014 Oct; 9(10):820-4. PubMed ID: 25150717 [TBL] [Abstract][Full Text] [Related]
4. Cooling mechanical motion via vacuum effect of an ensemble of quantum emitters. Nie W; Chen A; Lan Y Opt Express; 2015 Nov; 23(24):30970-84. PubMed ID: 26698728 [TBL] [Abstract][Full Text] [Related]
5. Enhanced quantum nonlinearities in a two-mode optomechanical system. Ludwig M; Safavi-Naeini AH; Painter O; Marquardt F Phys Rev Lett; 2012 Aug; 109(6):063601. PubMed ID: 23006265 [TBL] [Abstract][Full Text] [Related]
6. Signatures of nonlinear cavity optomechanics in the weak coupling regime. Børkje K; Nunnenkamp A; Teufel JD; Girvin SM Phys Rev Lett; 2013 Aug; 111(5):053603. PubMed ID: 23952399 [TBL] [Abstract][Full Text] [Related]
7. Strong Coupling Optomechanics Mediated by a Qubit in the Dispersive Regime. Aporvari AS; Vitali D Entropy (Basel); 2021 Jul; 23(8):. PubMed ID: 34441106 [TBL] [Abstract][Full Text] [Related]
8. Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics. Liu YC; Xiao YF; Luan X; Wong CW Phys Rev Lett; 2013 Apr; 110(15):153606. PubMed ID: 25167269 [TBL] [Abstract][Full Text] [Related]
9. Single-photon quantum regime of artificial radiation pressure on a surface acoustic wave resonator. Noguchi A; Yamazaki R; Tabuchi Y; Nakamura Y Nat Commun; 2020 Mar; 11(1):1183. PubMed ID: 32184387 [TBL] [Abstract][Full Text] [Related]
10. Cavity optomechanics mediated by a quantum two-level system. Pirkkalainen JM; Cho SU; Massel F; Tuorila J; Heikkilä TT; Hakonen PJ; Sillanpää MA Nat Commun; 2015 Apr; 6():6981. PubMed ID: 25912295 [TBL] [Abstract][Full Text] [Related]
12. Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity. Yuan M; Singh V; Blanter YM; Steele GA Nat Commun; 2015 Oct; 6():8491. PubMed ID: 26450772 [TBL] [Abstract][Full Text] [Related]
13. Quantum phase gate for optical qubits with cavity quantum optomechanics. Asjad M; Tombesi P; Vitali D Opt Express; 2015 Mar; 23(6):7786-94. PubMed ID: 25837117 [TBL] [Abstract][Full Text] [Related]
14. High frequency GaAs nano-optomechanical disk resonator. Ding L; Baker C; Senellart P; Lemaitre A; Ducci S; Leo G; Favero I Phys Rev Lett; 2010 Dec; 105(26):263903. PubMed ID: 21231665 [TBL] [Abstract][Full Text] [Related]
15. Multichannel cavity optomechanics for all-optical amplification of radio frequency signals. Li H; Chen Y; Noh J; Tadesse S; Li M Nat Commun; 2012; 3():1091. PubMed ID: 23033067 [TBL] [Abstract][Full Text] [Related]
16. Double-passage ground-state cooling induced by quantum interference in the hybrid optomechanical system. Li L; Luo RH; Liu L; Zhang S; Zhang JQ Sci Rep; 2018 Sep; 8(1):14276. PubMed ID: 30250233 [TBL] [Abstract][Full Text] [Related]