BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 27824568)

  • 1. Optimized Plane Wave Imaging for Fast and High-Quality Ultrasound Imaging.
    Jensen J; Stuart MB; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Nov; 63(11):1922-1934. PubMed ID: 27824568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound grayscale image quality comparison between a 2D intracavitary transducer and a 3D intracavitary transducer used in 2D mode: A phantom study.
    Zhou W; Long Z; Tradup DJ; Stekel SF; Browne JE; Brown DL; Hangiandreou NJ
    J Appl Clin Med Phys; 2019 Jun; 20(6):134-140. PubMed ID: 31002482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of transmission and reconstruction parameters in angular displacement compounding using plane wave ultrasound.
    Hendriks GAGM; Hansen HHG; De Korte CL; Chen C
    Phys Med Biol; 2020 Apr; 65(8):085007. PubMed ID: 32109889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate Angle Estimator for High-Frame-Rate 2-D Vector Flow Imaging.
    Villagomez Hoyos CA; Stuart MB; Hansen KL; Nielsen MB; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jun; 63(6):842-53. PubMed ID: 27093598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compounding in synthetic aperture imaging.
    Hansen JM; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Sep; 59(9):2054-65. PubMed ID: 23007781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing Image Quality of Photoacoustic Tomography Using Sub-Pitch Array Translation Approach: Simulation and Experimental Validation.
    Chandramoorthi S; Thittai AK
    IEEE Trans Biomed Eng; 2019 Dec; 66(12):3543-3552. PubMed ID: 30932824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimizing Image Quality Loss After Channel Count Reduction for Plane Wave Ultrasound via Deep Learning Inference.
    Xiao D; Pitman WMK; Yiu BYS; Chee AJY; Yu ACH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Oct; 69(10):2849-2861. PubMed ID: 35862334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plane-Wave Compounding in Automated Breast Volume Scanning: A Phantom-Based Study.
    Holländer B; Hendriks GA; Mann RM; Hansen HH; de Korte CL
    Ultrasound Med Biol; 2016 Oct; 42(10):2493-503. PubMed ID: 27401958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of element pitch on synthetic aperture ultrasound imaging.
    Hasegawa H; de Korte CL
    J Med Ultrason (2001); 2016 Jul; 43(3):317-25. PubMed ID: 26896949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Self-adaptive beamforming method based on plane wave ultrasound imaging].
    Zhang L; Zhou H; Zheng Y; Gong X; Wang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Aug; 30(4):843-8, 853. PubMed ID: 24059068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Ultrafast Imaging of Coherent Plane-wave Compouding Based on a Small Size Ultrasound Transducer].
    Tang Y; Cui Y; Li Z; Yang C; Cai L; Lyu J; Jiao Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2019 Sep; 43(5):313-317. PubMed ID: 31625324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive Comparison of Image Quality Aspects Between Conventional and Plane-Wave Imaging Methods on a Commercial Scanner.
    Hendriks GAGM; Weijers G; Chen C; Hertel M; Lee CY; Dueppenbecker PM; Radicke M; Milkowski A; Hansen HHG; de Korte CL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jun; 69(6):2039-2049. PubMed ID: 35404814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of parameters on the accuracy and precision of ultrasound-based local pulse wave velocity measurement: a simulation study.
    Huang C; Ren TL; Luo J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Dec; 61(12):2001-18. PubMed ID: 25474776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase Modulation Beamforming for Ultrafast Plane-Wave Imaging.
    Jing B; Lindsey BD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Oct; 67(10):2003-2011. PubMed ID: 32396082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic aperture focusing for a single-element transducer undergoing helical motion.
    Andresen H; Nikolov SI; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):935-43. PubMed ID: 21622049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parameter study of 3D synthetic aperture post-beamforming procedure.
    Nikolov SI; Santén P; Bjuvsten O; Jensen JA
    Ultrasonics; 2006 Dec; 44 Suppl 1():e159-64. PubMed ID: 16844163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 40 MHz high-frequency ultrafast ultrasound imaging.
    Huang CC; Chen PY; Peng PH; Lee PY
    Med Phys; 2017 Jun; 44(6):2185-2195. PubMed ID: 28369938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theranostic 3D ultrasound imaging system for high resolution image-guided therapy.
    Bendjador H; Foiret J; Wodnicki R; Stephens DN; Krut Z; Park EY; Gazit Z; Gazit D; Pelled G; Ferrara KW
    Theranostics; 2022; 12(11):4949-4964. PubMed ID: 35836805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of phase aberration and noise on extended high frame rate imaging.
    Wang J; Lu JY
    Ultrason Imaging; 2007 Apr; 29(2):105-21. PubMed ID: 17679325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional synthetic aperture focusing using a rocking convex array transducer.
    Andresen H; Nikolov SI; Pedersen MM; Buckton D; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1051-63. PubMed ID: 20442016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.