These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 27824899)
21. Implications of differences in expression of sarcosine metabolism-related proteins according to the molecular subtype of breast cancer. Yoon JK; Kim DH; Koo JS J Transl Med; 2014 May; 12():149. PubMed ID: 24884785 [TBL] [Abstract][Full Text] [Related]
22. Differentially expressed genes in androgen-dependent and -independent prostate carcinomas. Chang GT; Blok LJ; Steenbeek M; Veldscholte J; van Weerden WM; van Steenbrugge GJ; Brinkmann AO Cancer Res; 1997 Sep; 57(18):4075-81. PubMed ID: 9307296 [TBL] [Abstract][Full Text] [Related]
23. Targeting amino acid transport in metastatic castration-resistant prostate cancer: effects on cell cycle, cell growth, and tumor development. Wang Q; Tiffen J; Bailey CG; Lehman ML; Ritchie W; Fazli L; Metierre C; Feng YJ; Li E; Gleave M; Buchanan G; Nelson CC; Rasko JE; Holst J J Natl Cancer Inst; 2013 Oct; 105(19):1463-73. PubMed ID: 24052624 [TBL] [Abstract][Full Text] [Related]
24. N-cadherin increases after androgen deprivation and is associated with metastasis in prostate cancer. Jennbacken K; Tesan T; Wang W; Gustavsson H; Damber JE; Welén K Endocr Relat Cancer; 2010 Jun; 17(2):469-79. PubMed ID: 20233707 [TBL] [Abstract][Full Text] [Related]
25. Cancer-associated fibroblasts promote prostate tumor growth and progression through upregulation of cholesterol and steroid biosynthesis. Neuwirt H; Bouchal J; Kharaishvili G; Ploner C; Jöhrer K; Pitterl F; Weber A; Klocker H; Eder IE Cell Commun Signal; 2020 Jan; 18(1):11. PubMed ID: 31980029 [TBL] [Abstract][Full Text] [Related]
26. Sarcosine as a potential prostate cancer biomarker--a review. Cernei N; Heger Z; Gumulec J; Zitka O; Masarik M; Babula P; Eckschlager T; Stiborova M; Kizek R; Adam V Int J Mol Sci; 2013 Jul; 14(7):13893-908. PubMed ID: 23880848 [TBL] [Abstract][Full Text] [Related]
27. miR-221-5p regulates proliferation and migration in human prostate cancer cells and reduces tumor growth in vivo. Kiener M; Chen L; Krebs M; Grosjean J; Klima I; Kalogirou C; Riedmiller H; Kneitz B; Thalmann GN; Snaar-Jagalska E; Spahn M; Kruithof-de Julio M; Zoni E BMC Cancer; 2019 Jun; 19(1):627. PubMed ID: 31238903 [TBL] [Abstract][Full Text] [Related]
28. Androgen receptor-dependent regulation of Bcl-xL expression: Implication in prostate cancer progression. Sun A; Tang J; Hong Y; Song J; Terranova PF; Thrasher JB; Svojanovsky S; Wang HG; Li B Prostate; 2008 Mar; 68(4):453-61. PubMed ID: 18196538 [TBL] [Abstract][Full Text] [Related]
29. Regulation of androgen receptor expression by Z-isochaihulactone mediated by the JNK signaling pathway and might be related to cytotoxicity in prostate cancer. Liu PY; Lin SZ; Sheu JJ; Lin CT; Lin PC; Chou YW; Huang MH; Chiou TW; Harn HJ Prostate; 2013 Apr; 73(5):531-41. PubMed ID: 23038474 [TBL] [Abstract][Full Text] [Related]
30. Gene expression in the LNCaP human prostate cancer progression model: progression associated expression in vitro corresponds to expression changes associated with prostate cancer progression in vivo. Chen Q; Watson JT; Marengo SR; Decker KS; Coleman I; Nelson PS; Sikes RA Cancer Lett; 2006 Dec; 244(2):274-88. PubMed ID: 16500022 [TBL] [Abstract][Full Text] [Related]
31. Regulatory Role of mir-203 in Prostate Cancer Progression and Metastasis. Saini S; Majid S; Yamamura S; Tabatabai L; Suh SO; Shahryari V; Chen Y; Deng G; Tanaka Y; Dahiya R Clin Cancer Res; 2011 Aug; 17(16):5287-98. PubMed ID: 21159887 [TBL] [Abstract][Full Text] [Related]
32. Galectin-3 Is Implicated in Tumor Progression and Resistance to Anti-androgen Drug Through Regulation of Androgen Receptor Signaling in Prostate Cancer. Dondoo TO; Fukumori T; Daizumoto K; Fukawa T; Kohzuki M; Kowada M; Kusuhara Y; Mori H; Nakatsuji H; Takahashi M; Kanayama HO Anticancer Res; 2017 Jan; 37(1):125-134. PubMed ID: 28011482 [TBL] [Abstract][Full Text] [Related]
33. Runx2 transcriptome of prostate cancer cells: insights into invasiveness and bone metastasis. Baniwal SK; Khalid O; Gabet Y; Shah RR; Purcell DJ; Mav D; Kohn-Gabet AE; Shi Y; Coetzee GA; Frenkel B Mol Cancer; 2010 Sep; 9():258. PubMed ID: 20863401 [TBL] [Abstract][Full Text] [Related]
34. Dissociation between androgen responsiveness for malignant growth vs. expression of prostate specific differentiation markers PSA, hK2, and PSMA in human prostate cancer models. Denmeade SR; Sokoll LJ; Dalrymple S; Rosen DM; Gady AM; Bruzek D; Ricklis RM; Isaacs JT Prostate; 2003 Mar; 54(4):249-57. PubMed ID: 12539223 [TBL] [Abstract][Full Text] [Related]
35. Establishment and characterization of androgen-independent human prostate cancer cell lines, LN-REC4 and LNCaP-SF, from LNCaP. Iwasa Y; Mizokami A; Miwa S; Koshida K; Namiki M Int J Urol; 2007 Mar; 14(3):233-9. PubMed ID: 17430262 [TBL] [Abstract][Full Text] [Related]
36. Alpha-tocopheryl succinate (alpha-TOS) modulates human prostate LNCaP xenograft growth and gene expression in BALB/c nude mice fed two levels of dietary soybean oil. Basu A; Grossie B; Bennett M; Mills N; Imrhan V Eur J Nutr; 2007 Feb; 46(1):34-43. PubMed ID: 17180484 [TBL] [Abstract][Full Text] [Related]
37. Smad3 is overexpressed in advanced human prostate cancer and necessary for progressive growth of prostate cancer cells in nude mice. Lu S; Lee J; Revelo M; Wang X; Lu S; Dong Z Clin Cancer Res; 2007 Oct; 13(19):5692-702. PubMed ID: 17908958 [TBL] [Abstract][Full Text] [Related]
38. Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-R1. Amler LC; Agus DB; LeDuc C; Sapinoso ML; Fox WD; Kern S; Lee D; Wang V; Leysens M; Higgins B; Martin J; Gerald W; Dracopoli N; Cordon-Cardo C; Scher HI; Hampton GM Cancer Res; 2000 Nov; 60(21):6134-41. PubMed ID: 11085537 [TBL] [Abstract][Full Text] [Related]
39. Identification of genes potentially involved in the acquisition of androgen-independent and metastatic tumor growth in an autochthonous genetically engineered mouse prostate cancer model. Morgenbesser SD; McLaren RP; Richards B; Zhang M; Akmaev VR; Winter SF; Mineva ND; Kaplan-Lefko PJ; Foster BA; Cook BP; Dufault MR; Cao X; Wang CJ; Teicher BA; Klinger KW; Greenberg NM; Madden SL Prostate; 2007 Jan; 67(1):83-106. PubMed ID: 17013881 [TBL] [Abstract][Full Text] [Related]
40. Expression profiles of androgen independent bone metastatic prostate cancer cells indicate up-regulation of the putative serine-threonine kinase GS3955. Bisoffi M; Klima I; Gresko E; Durfee PN; Hines WC; Griffith JK; Studer UE; Thalmann GN J Urol; 2004 Sep; 172(3):1145-50. PubMed ID: 15311059 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]