BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 27825118)

  • 1. Amplification of MUC1 in prostate cancer metastasis and CRPC development.
    Wong N; Major P; Kapoor A; Wei F; Yan J; Aziz T; Zheng M; Jayasekera D; Cutz JC; Chow MJ; Tang D
    Oncotarget; 2016 Dec; 7(50):83115-83133. PubMed ID: 27825118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upregulation of FAM84B during prostate cancer progression.
    Wong N; Gu Y; Kapoor A; Lin X; Ojo D; Wei F; Yan J; de Melo J; Major P; Wood G; Aziz T; Cutz JC; Bonert M; Patterson AJ; Tang D
    Oncotarget; 2017 Mar; 8(12):19218-19235. PubMed ID: 28186973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of MUC1 and Genomic Alterations in Its Network Associate with Prostate Cancer Progression.
    Lin X; Gu Y; Kapoor A; Wei F; Aziz T; Ojo D; Jiang Y; Bonert M; Shayegan B; Yang H; Al-Nedawi K; Major P; Tang D
    Neoplasia; 2017 Nov; 19(11):857-867. PubMed ID: 28930697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MUC1-C regulates lineage plasticity driving progression to neuroendocrine prostate cancer.
    Yasumizu Y; Rajabi H; Jin C; Hata T; Pitroda S; Long MD; Hagiwara M; Li W; Hu Q; Liu S; Yamashita N; Fushimi A; Kui L; Samur M; Yamamoto M; Zhang Y; Zhang N; Hong D; Maeda T; Kosaka T; Wong KK; Oya M; Kufe D
    Nat Commun; 2020 Jan; 11(1):338. PubMed ID: 31953400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CIP2A is a candidate therapeutic target in clinically challenging prostate cancer cell populations.
    Khanna A; Rane JK; Kivinummi KK; Urbanucci A; Helenius MA; Tolonen TT; Saramäki OR; Latonen L; Manni V; Pimanda JE; Maitland NJ; Westermarck J; Visakorpi T
    Oncotarget; 2015 Aug; 6(23):19661-70. PubMed ID: 25965834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subgroups of Castration-resistant Prostate Cancer Bone Metastases Defined Through an Inverse Relationship Between Androgen Receptor Activity and Immune Response.
    Ylitalo EB; Thysell E; Jernberg E; Lundholm M; Crnalic S; Egevad L; Stattin P; Widmark A; Bergh A; Wikström P
    Eur Urol; 2017 May; 71(5):776-787. PubMed ID: 27497761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NDRG2 acts as a negative regulator downstream of androgen receptor and inhibits the growth of androgen-dependent and castration-resistant prostate cancer.
    Yu C; Wu G; Li R; Gao L; Yang F; Zhao Y; Zhang J; Zhang R; Zhang J; Yao L; Yuan J; Li X
    Cancer Biol Ther; 2015; 16(2):287-96. PubMed ID: 25756511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High expression of TROP2 characterizes different cell subpopulations in androgen-sensitive and androgen-independent prostate cancer cells.
    Xie J; Mølck C; Paquet-Fifield S; Butler L; ; Sloan E; Ventura S; Hollande F
    Oncotarget; 2016 Jul; 7(28):44492-44504. PubMed ID: 27283984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer.
    Sharp A; Coleman I; Yuan W; Sprenger C; Dolling D; Rodrigues DN; Russo JW; Figueiredo I; Bertan C; Seed G; Riisnaes R; Uo T; Neeb A; Welti J; Morrissey C; Carreira S; Luo J; Nelson PS; Balk SP; True LD; de Bono JS; Plymate SR
    J Clin Invest; 2019 Jan; 129(1):192-208. PubMed ID: 30334814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Androgen Receptor Splice Variant 7 and Efficacy of Taxane Chemotherapy in Patients With Metastatic Castration-Resistant Prostate Cancer.
    Antonarakis ES; Lu C; Luber B; Wang H; Chen Y; Nakazawa M; Nadal R; Paller CJ; Denmeade SR; Carducci MA; Eisenberger MA; Luo J
    JAMA Oncol; 2015 Aug; 1(5):582-91. PubMed ID: 26181238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting GPR30 with G-1: a new therapeutic target for castration-resistant prostate cancer.
    Lam HM; Ouyang B; Chen J; Ying J; Wang J; Wu CL; Jia L; Medvedovic M; Vessella RL; Ho SM
    Endocr Relat Cancer; 2014; 21(6):903-14. PubMed ID: 25287069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MUC1-C oncoprotein confers androgen-independent growth of human prostate cancer cells.
    Rajabi H; Ahmad R; Jin C; Joshi MD; Guha M; Alam M; Kharbanda S; Kufe D
    Prostate; 2012 Nov; 72(15):1659-68. PubMed ID: 22473899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroendocrine differentiation in usual-type prostatic adenocarcinoma: Molecular characterization and clinical significance.
    Kaur H; Samarska I; Lu J; Faisal F; Maughan BL; Murali S; Asrani K; Alshalalfa M; Antonarakis ES; Epstein JI; Joshu CE; Schaeffer EM; Mosquera JM; Lotan TL
    Prostate; 2020 Sep; 80(12):1012-1023. PubMed ID: 32649013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. B7-H3 as a Therapeutic Target in Advanced Prostate Cancer.
    Guo C; Figueiredo I; Gurel B; Neeb A; Seed G; Crespo M; Carreira S; Rekowski J; Buroni L; Welti J; Bogdan D; Gallagher L; Sharp A; Fenor de la Maza MD; Rescigno P; Westaby D; Chandran K; Riisnaes R; Ferreira A; Miranda S; Calì B; Alimonti A; Bressan S; Nguyen AHT; Shen MM; Hawley JE; Obradovic A; Drake CG; Bertan C; Baker C; Tunariu N; Yuan W; de Bono JS
    Eur Urol; 2023 Mar; 83(3):224-238. PubMed ID: 36114082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orphan nuclear receptor TLX contributes to androgen insensitivity in castration-resistant prostate cancer via its repression of androgen receptor transcription.
    Jia L; Wu D; Wang Y; You W; Wang Z; Xiao L; Cai G; Xu Z; Zou C; Wang F; Teoh JY; Ng CF; Yu S; Chan FL
    Oncogene; 2018 Jun; 37(25):3340-3355. PubMed ID: 29555975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BRD4 Regulates Metastatic Potential of Castration-Resistant Prostate Cancer through AHNAK.
    Shafran JS; Andrieu GP; Györffy B; Denis GV
    Mol Cancer Res; 2019 Aug; 17(8):1627-1638. PubMed ID: 31110158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer.
    Beltran H; Prandi D; Mosquera JM; Benelli M; Puca L; Cyrta J; Marotz C; Giannopoulou E; Chakravarthi BV; Varambally S; Tomlins SA; Nanus DM; Tagawa ST; Van Allen EM; Elemento O; Sboner A; Garraway LA; Rubin MA; Demichelis F
    Nat Med; 2016 Mar; 22(3):298-305. PubMed ID: 26855148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Novel Diagnosis Biomarkers for Therapy-Related Neuroendocrine Prostate Cancer.
    Zhang C; Qian J; Wu Y; Zhu Z; Yu W; Gong Y; Li X; He Z; Zhou L
    Pathol Oncol Res; 2021; 27():1609968. PubMed ID: 34646089
    [No Abstract]   [Full Text] [Related]  

  • 19. Patient-derived castration-resistant prostate cancer model revealed CTBP2 upregulation mediated by OCT1 and androgen receptor.
    Obinata D; Takayama K; Lawrence MG; Funakoshi D; Hara M; Niranjan B; Teng L; Taylor RA; Risbridger GP; Takahashi S; Inoue S
    BMC Cancer; 2024 May; 24(1):554. PubMed ID: 38698344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melatonin Inhibits Androgen Receptor Splice Variant-7 (AR-V7)-Induced Nuclear Factor-Kappa B (NF-κB) Activation and NF-κB Activator-Induced AR-V7 Expression in Prostate Cancer Cells: Potential Implications for the Use of Melatonin in Castration-Resistant Prostate Cancer (CRPC) Therapy.
    Liu VWS; Yau WL; Tam CW; Yao KM; Shiu SYW
    Int J Mol Sci; 2017 May; 18(6):. PubMed ID: 28561752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.