These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 27825147)

  • 1. Factors That Affect Tissue-Engineered Skeletal Muscle Function and Physiology.
    Khodabukus A; Baar K
    Cells Tissues Organs; 2016; 202(3-4):159-168. PubMed ID: 27825147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioreactors for guiding muscle tissue growth and development.
    Dennis RG; Smith B; Philp A; Donnelly K; Baar K
    Adv Biochem Eng Biotechnol; 2009; 112():39-79. PubMed ID: 19290497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic mechanical preconditioning improves engineered muscle contraction.
    Moon du G; Christ G; Stitzel JD; Atala A; Yoo JJ
    Tissue Eng Part A; 2008 Apr; 14(4):473-82. PubMed ID: 18399787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coaxial electrospun poly(ε-caprolactone), multiwalled carbon nanotubes, and polyacrylic acid/polyvinyl alcohol scaffold for skeletal muscle tissue engineering.
    McKeon-Fischer KD; Flagg DH; Freeman JW
    J Biomed Mater Res A; 2011 Dec; 99(3):493-9. PubMed ID: 21913315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering multi-layered skeletal muscle tissue by using 3D microgrooved collagen scaffolds.
    Chen S; Nakamoto T; Kawazoe N; Chen G
    Biomaterials; 2015 Dec; 73():23-31. PubMed ID: 26398306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering skeletal muscle tissue in bioreactor systems.
    An Y; Li D
    Chin Med J (Engl); 2014; 127(23):4130-9. PubMed ID: 25430462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creating Interactions between Tissue-Engineered Skeletal Muscle and the Peripheral Nervous System.
    Smith AS; Passey SL; Martin NR; Player DJ; Mudera V; Greensmith L; Lewis MP
    Cells Tissues Organs; 2016; 202(3-4):143-158. PubMed ID: 27825148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three dimensional multi-cellular muscle-like tissue engineering in perfusion-based bioreactors.
    Cerino G; Gaudiello E; Grussenmeyer T; Melly L; Massai D; Banfi A; Martin I; Eckstein F; Grapow M; Marsano A
    Biotechnol Bioeng; 2016 Jan; 113(1):226-36. PubMed ID: 26126766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering.
    Liu Y; Teoh SH; Chong MS; Yeow CH; Kamm RD; Choolani M; Chan JK
    Tissue Eng Part A; 2013 Apr; 19(7-8):893-904. PubMed ID: 23102089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and progress of engineering of skeletal muscle tissue.
    Liao H; Zhou GQ
    Tissue Eng Part B Rev; 2009 Sep; 15(3):319-31. PubMed ID: 19591626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exercising Bioengineered Skeletal Muscle In Vitro: Biopsy to Bioreactor.
    Turner DC; Kasper AM; Seaborne RA; Brown AD; Close GL; Murphy M; Stewart CE; Martin NRW; Sharples AP
    Methods Mol Biol; 2019; 1889():55-79. PubMed ID: 30367409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tubular Compressed Collagen Scaffolds for Ureteral Tissue Engineering in a Flow Bioreactor System.
    Vardar E; Engelhardt EM; Larsson HM; Mouloungui E; Pinnagoda K; Hubbell JA; Frey P
    Tissue Eng Part A; 2015 Sep; 21(17-18):2334-45. PubMed ID: 26065873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(3,4-ethylenedioxythiophene) nanoparticle and poly(ɛ-caprolactone) electrospun scaffold characterization for skeletal muscle regeneration.
    McKeon-Fischer KD; Browe DP; Olabisi RM; Freeman JW
    J Biomed Mater Res A; 2015 Nov; 103(11):3633-41. PubMed ID: 25855940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered muscle: a tool for studying muscle physiology and function.
    Khodabukus A; Paxton JZ; Donnelly K; Baar K
    Exerc Sport Sci Rev; 2007 Oct; 35(4):186-91. PubMed ID: 17921787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of scaffold-free contractile skeletal muscle tissue using magnetite-incorporated myogenic C2C12 cells.
    Fujita H; Shimizu K; Yamamoto Y; Ito A; Kamihira M; Nagamori E
    J Tissue Eng Regen Med; 2010 Aug; 4(6):437-43. PubMed ID: 20084621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smooth muscle cell seeding of decellularized scaffolds: the importance of bioreactor preconditioning to development of a more native architecture for tissue-engineered blood vessels.
    Yazdani SK; Watts B; Machingal M; Jarajapu YP; Van Dyke ME; Christ GJ
    Tissue Eng Part A; 2009 Apr; 15(4):827-40. PubMed ID: 19290806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the growth environment of a hydrostatic force bioreactor for preconditioning of tissue-engineered constructs.
    Reinwald Y; Leonard KH; Henstock JR; Whiteley JP; Osborne JM; Waters SL; Levesque P; El Haj AJ
    Tissue Eng Part C Methods; 2015 Jan; 21(1):1-14. PubMed ID: 24967717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing the structure and contractility of engineered skeletal muscle thin films.
    Sun Y; Duffy R; Lee A; Feinberg AW
    Acta Biomater; 2013 Aug; 9(8):7885-94. PubMed ID: 23632372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a biological scaffold engineered using the extracellular matrix secreted by skeletal muscle cells.
    Hurd SA; Bhatti NM; Walker AM; Kasukonis BM; Wolchok JC
    Biomaterials; 2015 May; 49():9-17. PubMed ID: 25725550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering skeletal muscle - from two to three dimensions.
    Ngan CGY; Quigley A; Kapsa RMI; Choong PFM
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e1-e6. PubMed ID: 28066991
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.