BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 27825154)

  • 1. Growth Factors for Skeletal Muscle Tissue Engineering.
    Syverud BC; VanDusen KW; Larkin LM
    Cells Tissues Organs; 2016; 202(3-4):169-179. PubMed ID: 27825154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Dexamethasone on Satellite Cells and Tissue Engineered Skeletal Muscle Units.
    Syverud BC; VanDusen KW; Larkin LM
    Tissue Eng Part A; 2016 Mar; 22(5-6):480-9. PubMed ID: 26790477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Human Epidermal Growth Factor on Tissue-Engineered Skeletal Muscle Structure and Function.
    Wroblewski OM; Vega-Soto EE; Nguyen MH; Cederna PS; Larkin LM
    Tissue Eng Part A; 2021 Sep; 27(17-18):1151-1159. PubMed ID: 33203338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Cell Seeding Density and Cell Confluence on Human Tissue Engineered Skeletal Muscle.
    Wroblewski OM; Nguyen MH; Cederna PS; Larkin LM
    Tissue Eng Part A; 2022 May; 28(9-10):420-432. PubMed ID: 34652973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Dexamethasone Dose and Timing on Tissue-Engineered Skeletal Muscle Units.
    Larson AA; Syverud BC; Florida SE; Rodriguez BL; Pantelic MN; Larkin LM
    Cells Tissues Organs; 2018; 205(4):197-207. PubMed ID: 30121672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-Free, High-Throughput Purification of Satellite Cells Using Microfluidic Inertial Separation.
    Syverud BC; Lin E; Nagrath S; Larkin LM
    Tissue Eng Part C Methods; 2018 Jan; 24(1):32-41. PubMed ID: 28946802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoxia promotes proliferation of human myogenic satellite cells: a potential benefactor in tissue engineering of skeletal muscle.
    Koning M; Werker PM; van Luyn MJ; Harmsen MC
    Tissue Eng Part A; 2011 Jul; 17(13-14):1747-58. PubMed ID: 21438665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of static magnetic fields on human myoblast cell cultures.
    Stern-Straeter J; Bonaterra GA; Kassner SS; Faber A; Sauter A; Schulz JD; Hörmann K; Kinscherf R; Goessler UR
    Int J Mol Med; 2011 Dec; 28(6):907-17. PubMed ID: 21837362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repairing Volumetric Muscle Loss in the Ovine Peroneus Tertius Following a 3-Month Recovery.
    Novakova SS; Rodriguez BL; Vega-Soto EE; Nutter GP; Armstrong RE; Macpherson PCD; Larkin LM
    Tissue Eng Part A; 2020 Aug; 26(15-16):837-851. PubMed ID: 32013753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Human Recombinant Irisin on Tissue-Engineered Skeletal Muscle Structure and Function.
    Nguyen MH; Kennedy CS; Wroblewski OM; Su E; Hwang DH; Larkin LM
    Tissue Eng Part A; 2024 Jan; 30(1-2):94-101. PubMed ID: 37842832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration.
    Choi JS; Yoon HI; Lee KS; Choi YC; Yang SH; Kim IS; Cho YW
    J Control Release; 2016 Jan; 222():107-15. PubMed ID: 26699421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparison of Ovine Facial and Limb Muscle as a Primary Cell Source for Engineered Skeletal Muscle.
    Rodriguez BL; Nguyen MH; Armstrong RE; Vega-Soto EE; Polkowski PM; Larkin LM
    Tissue Eng Part A; 2020 Feb; 26(3-4):167-177. PubMed ID: 31469044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA-1 and microRNA-206 improve differentiation potential of human satellite cells: a novel approach for tissue engineering of skeletal muscle.
    Koning M; Werker PM; van der Schaft DW; Bank RA; Harmsen MC
    Tissue Eng Part A; 2012 May; 18(9-10):889-98. PubMed ID: 22070522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscling in on stem cells.
    Sinanan AC; Buxton PG; Lewis MP
    Biol Cell; 2006 Apr; 98(4):203-14. PubMed ID: 16545076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Focused in vivo genetic analysis of implanted engineered myofascial constructs.
    Propst JT; Fann SA; Franchini JL; Lessner SM; Rose JR; Hansen KJ; Terracio L; Yost MJ
    J Invest Surg; 2009; 22(1):35-45. PubMed ID: 19191156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo.
    Juhas M; Engelmayr GC; Fontanella AN; Palmer GM; Bursac N
    Proc Natl Acad Sci U S A; 2014 Apr; 111(15):5508-13. PubMed ID: 24706792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Potential of Combination Therapeutics for More Complete Repair of Volumetric Muscle Loss Injuries: The Role of Exogenous Growth Factors and/or Progenitor Cells in Implantable Skeletal Muscle Tissue Engineering Technologies.
    Passipieri JA; Christ GJ
    Cells Tissues Organs; 2016; 202(3-4):202-213. PubMed ID: 27825153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Passaging Primary Skeletal Muscle Cell Isolates on the Engineering of Skeletal Muscle.
    Wroblewski OM; Kennedy CS; Vega-Soto EE; Forester CE; Su EY; Nguyen MH; Cederna P; Larkin LM
    Tissue Eng Part A; 2024 Jun; ():. PubMed ID: 38874526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Function of death-associated protein 1 in proliferation, differentiation, and apoptosis of chicken satellite cells.
    Shin J; McFarland DC; Strasburg GM; Velleman SG
    Muscle Nerve; 2013 Nov; 48(5):777-90. PubMed ID: 23483580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of human myoblast cultures for tissue engineering.
    Stern-Straeter J; Bran G; Riedel F; Sauter A; Hörmann K; Goessler UR
    Int J Mol Med; 2008 Jan; 21(1):49-56. PubMed ID: 18097615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.