These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 27825226)

  • 1. Ab initio effective rotational and rovibrational Hamiltonians for non-rigid systems via curvilinear second order vibrational Møller-Plesset perturbation theory.
    Changala PB; Baraban JH
    J Chem Phys; 2016 Nov; 145(17):174106. PubMed ID: 27825226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of axis embedding on rigid rotor decomposition analysis of variational rovibrational wave functions.
    Szidarovszky T; Fábri C; Császár AG
    J Chem Phys; 2012 May; 136(17):174112. PubMed ID: 22583215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytic energy gradients for the orbital-optimized third-order Møller-Plesset perturbation theory.
    Bozkaya U
    J Chem Phys; 2013 Sep; 139(10):104116. PubMed ID: 24050337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerically constructed internal-coordinate Hamiltonian with Eckart embedding and its application for the inversion tunneling of ammonia.
    Fábri C; Mátyus E; Császár AG
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Feb; 119():84-9. PubMed ID: 23702049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A perturbative calculation of the rovibrational energy levels of methane.
    Wang XG; Sibert EL
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Mar; 58(4):863-72. PubMed ID: 11995634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio calculation of the rotational spectrum of methane vibrational ground state.
    Cassam-Chenaï P; Liévin J
    J Chem Phys; 2012 May; 136(17):174309. PubMed ID: 22583232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic differentiation method for numerical construction of the rotational-vibrational Hamiltonian as a power series in the curvilinear internal coordinates using the Eckart frame.
    Yachmenev A; Yurchenko SN
    J Chem Phys; 2015 Jul; 143(1):014105. PubMed ID: 26156463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rovibrational Energies of Triatomic Molecules by Means of the Rayleigh-Schrödinger Perturbation Theory.
    Spirko V; Kraemer WP
    J Mol Spectrosc; 2000 Feb; 199(2):236-244. PubMed ID: 10637109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limited rotational and rovibrational line lists computed with highly accurate quartic force fields and ab initio dipole surfaces.
    Fortenberry RC; Huang X; Schwenke DW; Lee TJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Feb; 119():76-83. PubMed ID: 23692860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fourth-order vibrational perturbation theory with the Watson Hamiltonian: Report of working equations and preliminary results.
    Gong JZ; Matthews DA; Changala PB; Stanton JF
    J Chem Phys; 2018 Sep; 149(11):114102. PubMed ID: 30243279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eckart frame vibration-rotation Hamiltonians: contravariant metric tensor.
    Pesonen J
    J Chem Phys; 2014 Feb; 140(7):074101. PubMed ID: 24559332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the structure of cyclohexane from femtosecond degenerate four-wave mixing spectroscopy and ab initio calculations.
    Riehn C; Matylitsky VV; Jarzeba W; Brutschy B; Tarakeshwar P; Kim KS
    J Am Chem Soc; 2003 Dec; 125(52):16455-62. PubMed ID: 14692789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytic energy gradients for the orbital-optimized second-order Møller-Plesset perturbation theory.
    Bozkaya U; Sherrill CD
    J Chem Phys; 2013 May; 138(18):184103. PubMed ID: 23676025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Getting down to the Fundamentals of Hydrogen Bonding: Anharmonic Vibrational Frequencies of (HF)2 and (H2O)2 from Ab Initio Electronic Structure Computations.
    Howard JC; Gray JL; Hardwick AJ; Nguyen LT; Tschumper GS
    J Chem Theory Comput; 2014 Dec; 10(12):5426-35. PubMed ID: 26583226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell pi-conjugated systems.
    Champagne B; Botek E; Nakano M; Nitta T; Yamaguchi K
    J Chem Phys; 2005 Mar; 122(11):114315. PubMed ID: 15839724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum and classical studies of vibrational motion of CH5+ on a global potential energy surface obtained from a novel ab initio direct dynamics approach.
    Brown A; McCoy AB; Braams BJ; Jin Z; Bowman JM
    J Chem Phys; 2004 Sep; 121(9):4105-16. PubMed ID: 15332956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetizability and rotational g tensors for density fitted local second-order Møller-Plesset perturbation theory using gauge-including atomic orbitals.
    Loibl S; Schütz M
    J Chem Phys; 2014 Jul; 141(2):024108. PubMed ID: 25028000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orbital-optimized third-order Møller-Plesset perturbation theory and its spin-component and spin-opposite scaled variants: application to symmetry breaking problems.
    Bozkaya U
    J Chem Phys; 2011 Dec; 135(22):224103. PubMed ID: 22168676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio correlation functionals from second-order perturbation theory.
    Schweigert IV; Lotrich VF; Bartlett RJ
    J Chem Phys; 2006 Sep; 125(10):104108. PubMed ID: 16999516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Derivation and assessment of relativistic hyperfine-coupling tensors on the basis of orbital-optimized second-order Møller-Plesset perturbation theory and the second-order Douglas-Kroll-Hess transformation.
    Sandhoefer B; Kossmann S; Neese F
    J Chem Phys; 2013 Mar; 138(10):104102. PubMed ID: 23514460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.