BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 27825339)

  • 1. Improvement of alkalophilicity of an alkaline xylanase Xyn11A-LC from Bacillus sp. SN5 by random mutation and Glu135 saturation mutagenesis.
    Bai W; Cao Y; Liu J; Wang Q; Jia Z
    BMC Biotechnol; 2016 Nov; 16(1):77. PubMed ID: 27825339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Insight into and Mutational Analysis of Family 11 Xylanases: Implications for Mechanisms of Higher pH Catalytic Adaptation.
    Bai W; Zhou C; Zhao Y; Wang Q; Ma Y
    PLoS One; 2015; 10(7):e0132834. PubMed ID: 26161643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning, expression, and characterization of a novel alkali-tolerant xylanase from alkaliphilic Bacillus sp. SN5.
    Bai W; Xue Y; Zhou C; Ma Y
    Biotechnol Appl Biochem; 2015; 62(2):208-17. PubMed ID: 24975401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the alkalophilic performances of the Xyl1 xylanase from Streptomyces sp. S38: structural comparison and mutational analysis.
    De Lemos Esteves F; Gouders T; Lamotte-Brasseur J; Rigali S; Frère JM
    Protein Sci; 2005 Feb; 14(2):292-302. PubMed ID: 15659364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed evolution to produce an alkalophilic variant from a Neocallimastix patriciarum xylanase.
    Chen YL; Tang TY; Cheng KJ
    Can J Microbiol; 2001 Dec; 47(12):1088-94. PubMed ID: 11822834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of alkaliphily of Bacillus alkaline xylanase by introducing amino acid substitutions both on catalytic cleft and protein surface.
    Umemoto H; Ihsanawati ; Inami M; Yatsunami R; Fukui T; Kumasaka T; Tanaka N; Nakamura S
    Biosci Biotechnol Biochem; 2009 Apr; 73(4):965-7. PubMed ID: 19352020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An alkaline active xylanase: insights into mechanisms of high pH catalytic adaptation.
    Mamo G; Thunnissen M; Hatti-Kaul R; Mattiasson B
    Biochimie; 2009 Sep; 91(9):1187-96. PubMed ID: 19567261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional structure of an alkaline xylanase Xyn11A-LC from alkalophilic Bacillus sp. SN5 and improvement of its thermal performance by introducing arginines substitutions.
    Bai W; Zhou C; Xue Y; Huang CH; Guo RT; Ma Y
    Biotechnol Lett; 2014 Jul; 36(7):1495-501. PubMed ID: 24682788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single amino acid substitution enhances the catalytic activity of family 11 xylanase at alkaline pH.
    Shibuya H; Kaneko S; Hayashi K
    Biosci Biotechnol Biochem; 2005 Aug; 69(8):1492-7. PubMed ID: 16116276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of alkali stability and thermostability of Paenibacillus campinasensis Family-11 xylanase by directed evolution and site-directed mutagenesis.
    Zheng H; Liu Y; Sun M; Han Y; Wang J; Sun J; Lu F
    J Ind Microbiol Biotechnol; 2014 Jan; 41(1):153-62. PubMed ID: 24212471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structures of native and xylosaccharide-bound alkali thermostable xylanase from an alkalophilic Bacillus sp. NG-27: structural insights into alkalophilicity and implications for adaptation to polyextreme conditions.
    Manikandan K; Bhardwaj A; Gupta N; Lokanath NK; Ghosh A; Reddy VS; Ramakumar S
    Protein Sci; 2006 Aug; 15(8):1951-60. PubMed ID: 16823036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concommitant adaptation of a GH11 xylanase by directed evolution to create an alkali-tolerant/thermophilic enzyme.
    Ruller R; Alponti J; Deliberto LA; Zanphorlin LM; Machado CB; Ward RJ
    Protein Eng Des Sel; 2014 Aug; 27(8):255-62. PubMed ID: 25096197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving catalytic efficiency of endo-β-1, 4-xylanase from Geobacillus stearothermophilus by directed evolution and H179 saturation mutagenesis.
    Wang Y; Feng S; Zhan T; Huang Z; Wu G; Liu Z
    J Biotechnol; 2013 Dec; 168(4):341-7. PubMed ID: 24157442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of salt bridges to alkaliphily of Bacillus alkaline xylanase.
    Umemoto H; Ihsanawati ; Inami M; Yatsunami R; Fukui T; Kumasaka T; Tanaka N; Nakamura S
    Nucleic Acids Symp Ser (Oxf); 2007; (51):461-2. PubMed ID: 18029786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic characterization of a novel thermostable and alkaline tolerant GH10 xylanase and activity improvement by multiple rational mutagenesis strategies.
    Lai Z; Zhou C; Ma X; Xue Y; Ma Y
    Int J Biol Macromol; 2021 Feb; 170():164-177. PubMed ID: 33352153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the thermostability of Geobacillus stearothermophilus xylanase XT6 by directed evolution and site-directed mutagenesis.
    Zhang ZG; Yi ZL; Pei XQ; Wu ZL
    Bioresour Technol; 2010 Dec; 101(23):9272-8. PubMed ID: 20691586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increase in the thermostability of GH11 xylanase XynJ from Bacillus sp. strain 41M-1 using site saturation mutagenesis.
    Takita T; Nakatani K; Katano Y; Suzuki M; Kojima K; Saka N; Mikami B; Yatsunami R; Nakamura S; Yasukawa K
    Enzyme Microb Technol; 2019 Nov; 130():109363. PubMed ID: 31421720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Improving thermal stability of xylanase by introducing aromatic residues at the N-terminus].
    Bai W; Yang L; Ma Y
    Sheng Wu Gong Cheng Xue Bao; 2014 Aug; 30(8):1217-24. PubMed ID: 25423751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Residue mutations of xylanase in Aspergillus kawachii alter its optimum pH.
    Qiu J; Han H; Sun B; Chen L; Yu C; Peng R; Yao Q
    Microbiol Res; 2016 Jan; 182():1-7. PubMed ID: 26686608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of the activity and alkaline pH stability of Thermobifida fusca xylanase A by directed evolution.
    Wang Q; Xia T
    Biotechnol Lett; 2008 May; 30(5):937-44. PubMed ID: 18292971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.