These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 27825561)
1. Clasp fabrication using one-process molding by repeated laser sintering and high-speed milling. Nakata T; Shimpo H; Ohkubo C J Prosthodont Res; 2017 Jul; 61(3):276-282. PubMed ID: 27825561 [TBL] [Abstract][Full Text] [Related]
2. Fitness and retentive force of cobalt-chromium alloy clasps fabricated with repeated laser sintering and milling. Torii M; Nakata T; Takahashi K; Kawamura N; Shimpo H; Ohkubo C J Prosthodont Res; 2018 Jul; 62(3):342-346. PubMed ID: 29428170 [TBL] [Abstract][Full Text] [Related]
3. Titanium clasp fabricated by selective laser melting, CNC milling, and conventional casting: a comparative in vitro study. Tan FB; Song JL; Wang C; Fan YB; Dai HW J Prosthodont Res; 2019 Jan; 63(1):58-65. PubMed ID: 30309743 [TBL] [Abstract][Full Text] [Related]
4. Comparison of cast Ti-Ni alloy clasp retention with conventional removable partial denture clasps. Kim D; Park C; Yi Y; Cho L J Prosthet Dent; 2004 Apr; 91(4):374-82. PubMed ID: 15116040 [TBL] [Abstract][Full Text] [Related]
5. [Finite element analyses of retention of removable partial denture circumferential clasps manufactured by selective laser melting]. Ma KN; Chen H; Shen YR; Zhou YS; Wang Y; Sun YC Beijing Da Xue Xue Bao Yi Xue Ban; 2022 Feb; 54(1):105-112. PubMed ID: 35165476 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of crown restoration retrofitting to existing clasps using CAD/CAM: fitness accuracy and retentive force. Ozawa D; Suzuki Y; Kawamura N; Ohkubo C J Prosthodont Res; 2015 Apr; 59(2):136-43. PubMed ID: 25662150 [TBL] [Abstract][Full Text] [Related]
7. Fitness accuracy and retentive forces of additive manufactured titanium clasp. Takahashi K; Torii M; Nakata T; Kawamura N; Shimpo H; Ohkubo C J Prosthodont Res; 2020 Oct; 64(4):468-477. PubMed ID: 32063534 [TBL] [Abstract][Full Text] [Related]
8. Laboratory efficiency of additive manufacturing for removable denture frameworks: A literature-based review. Suzuki Y; Shimizu S; Waki T; Shimpo H; Ohkubo C Dent Mater J; 2021 Mar; 40(2):265-271. PubMed ID: 33361665 [TBL] [Abstract][Full Text] [Related]
9. Internal porosities, retentive force, and survival of cobalt-chromium alloy clasps fabricated by selective laser-sintering. Schweiger J; Güth JF; Erdelt KJ; Edelhoff D; Schubert O J Prosthodont Res; 2020 Apr; 64(2):210-216. PubMed ID: 31680054 [TBL] [Abstract][Full Text] [Related]
10. Retentive force and fitness accuracy of cobalt-chrome alloy clasps for removable partial denture fabricated with SLM technique. Zhang M; Gan N; Qian H; Jiao T J Prosthodont Res; 2022 Jul; 66(3):459-465. PubMed ID: 34615841 [TBL] [Abstract][Full Text] [Related]
11. Influence of Different Undercut Depths of Clasp Fabricated by Selective Laser Melting on Retentive Force. Tomono K; Kato Y; Wadachi J; Tasaka A; Takemoto S; Yamashita S Eur J Prosthodont Restor Dent; 2024 Sep; 32(3):261-269. PubMed ID: 38591550 [TBL] [Abstract][Full Text] [Related]
12. Feasibility study and material selection for powder-bed fusion process in printing of denture clasps. Ma K; Chen H; Shen Y; Guo Y; Li W; Wang Y; Zhang Y; Sun Y Comput Biol Med; 2023 May; 157():106772. PubMed ID: 36963354 [TBL] [Abstract][Full Text] [Related]
13. Accuracy of Clasps Fabricated with Three Different CAD/CAM Technologies: Casting, Milling, and Selective Laser Sintering. Tasaka A; Kato Y; Odaka K; Matsunaga S; Goto TK; Abe S; Yamashita S Int J Prosthodont; 2019; 32(6):526-529. PubMed ID: 31664269 [TBL] [Abstract][Full Text] [Related]
14. Effect of arm design and chemical polishing on retentive force of cast titanium alloy clasps. Shimpo H J Prosthodont; 2008 Jun; 17(4):300-7. PubMed ID: 18205738 [TBL] [Abstract][Full Text] [Related]
15. Deformation and retentive forces variations of the additively manufactured cobalt-chromium and titanium alloys dental clasps. El-Tamimi KM; Bayoumi DA; Alshenaiber R; Aljulayfi I; Ahmed MMZ; El-Sayed ME Saudi Dent J; 2024 Jun; 36(6):947-953. PubMed ID: 38883903 [TBL] [Abstract][Full Text] [Related]
16. Fitness accuracy and retentive forces of milled titanium clasp. Maruo R; Shimpo H; Kimoto K; Hayakawa T; Miura H; Ohkubo C Dent Mater J; 2022 May; 41(3):414-420. PubMed ID: 35135942 [TBL] [Abstract][Full Text] [Related]
17. In vitro assessment of polishing efficiency for additive-manufactured Co-Cr alloy clasps. Takeyama J; Sakurai T; Shimpo H; Kawamura N; Ohkubo C J Prosthodont Res; 2024 Oct; 68(4):591-598. PubMed ID: 38417870 [TBL] [Abstract][Full Text] [Related]
18. In vitro study of optimal removable partial denture clasp design made from novel high-performance polyetherketoneketone. Peng PW; Chen MS; Peng TY; Huang PC; Nikawa H; Lee WF J Prosthodont Res; 2024 Jul; 68(3):466-473. PubMed ID: 38220161 [TBL] [Abstract][Full Text] [Related]
19. [Cyclic fatigue test of cobalt-chromium alloy cast clasps]. Xu MR; Cheng H; Zheng M; Li XR; Wu WQ; Chen D Zhonghua Kou Qiang Yi Xue Za Zhi; 2010 Jan; 45(1):36-8. PubMed ID: 20368039 [TBL] [Abstract][Full Text] [Related]
20. An analytical model to design circumferential clasps for laser-sintered removable partial dentures. Alsheghri AA; Alageel O; Caron E; Ciobanu O; Tamimi F; Song J Dent Mater; 2018 Oct; 34(10):1474-1482. PubMed ID: 29937332 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]