BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 27825983)

  • 1. Accelerating glioblastoma drug discovery: Convergence of patient-derived models, genome editing and phenotypic screening.
    O'Duibhir E; Carragher NO; Pollard SM
    Mol Cell Neurosci; 2017 Apr; 80():198-207. PubMed ID: 27825983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome Editing Reveals Glioblastoma Addiction to MicroRNA-10b.
    El Fatimy R; Subramanian S; Uhlmann EJ; Krichevsky AM
    Mol Ther; 2017 Feb; 25(2):368-378. PubMed ID: 28153089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of CRISPR/Cas9 gene-editing tools for developing models in drug discovery.
    Ahmad G; Amiji M
    Drug Discov Today; 2018 Mar; 23(3):519-533. PubMed ID: 29326075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9 gene-editing strategies in cardiovascular cells.
    Vermersch E; Jouve C; Hulot JS
    Cardiovasc Res; 2020 Apr; 116(5):894-907. PubMed ID: 31584620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of CRISPR-Cas9 Technology to Genome Editing in Glioblastoma Multiforme.
    Al-Sammarraie N; Ray SK
    Cells; 2021 Sep; 10(9):. PubMed ID: 34571991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental models and tools to tackle glioblastoma.
    Robertson FL; Marqués-Torrejón MA; Morrison GM; Pollard SM
    Dis Model Mech; 2019 Sep; 12(9):. PubMed ID: 31519690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-Wide CRISPR-Cas9 Screens Expose Genetic Vulnerabilities and Mechanisms of Temozolomide Sensitivity in Glioblastoma Stem Cells.
    MacLeod G; Bozek DA; Rajakulendran N; Monteiro V; Ahmadi M; Steinhart Z; Kushida MM; Yu H; Coutinho FJ; Cavalli FMG; Restall I; Hao X; Hart T; Luchman HA; Weiss S; Dirks PB; Angers S
    Cell Rep; 2019 Apr; 27(3):971-986.e9. PubMed ID: 30995489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Validation of CRISPR/Cas9 Systems for Targeted Gene Modification in Induced Pluripotent Stem Cells.
    Lee CM; Zhu H; Davis TH; Deshmukh H; Bao G
    Methods Mol Biol; 2017; 1498():3-21. PubMed ID: 27709565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of Isogenic Human iPS Cell Line Precisely Corrected by Genome Editing Using the CRISPR/Cas9 System.
    Grobarczyk B; Franco B; Hanon K; Malgrange B
    Stem Cell Rev Rep; 2015 Oct; 11(5):774-87. PubMed ID: 26059412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR Del/Rei: a simple, flexible, and efficient pipeline for scarless genome editing.
    Feuer KL; Wahbeh MH; Yovo C; Rabie E; Lam AN; Abdollahi S; Young LJ; Rike B; Umamageswaran A; Avramopoulos D
    Sci Rep; 2022 Jul; 12(1):11928. PubMed ID: 35831384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of CRISPR genome editing technology in drug target identification and validation.
    Lu Q; Livi GP; Modha S; Yusa K; Macarrón R; Dow DJ
    Expert Opin Drug Discov; 2017 Jun; 12(6):541-552. PubMed ID: 28388235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome Editing Using Cas9 Ribonucleoprotein Is Effective for Introducing
    Hamada T; Yokoyama S; Akahane T; Matsuo K; Tanimoto A
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR Genome Engineering for Human Pluripotent Stem Cell Research.
    Chaterji S; Ahn EH; Kim DH
    Theranostics; 2017; 7(18):4445-4469. PubMed ID: 29158838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CIS deletion by CRISPR/Cas9 enhances human primary natural killer cell functions against allogeneic glioblastoma.
    Nakazawa T; Morimoto T; Maeoka R; Matsuda R; Nakamura M; Nishimura F; Ouji N; Yamada S; Nakagawa I; Park YS; Ito T; Nakase H; Tsujimura T
    J Exp Clin Cancer Res; 2023 Aug; 42(1):205. PubMed ID: 37563692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9 Genome Editing: A Promising Tool for Therapeutic Applications of Induced Pluripotent Stem Cells.
    Zhang Y; Sastre D; Wang F
    Curr Stem Cell Res Ther; 2018; 13(4):243-251. PubMed ID: 29446747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome editing of human pancreatic beta cell models: problems, possibilities and outlook.
    Balboa D; Prasad RB; Groop L; Otonkoski T
    Diabetologia; 2019 Aug; 62(8):1329-1336. PubMed ID: 31161346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR Screening of CAR T Cells and Cancer Stem Cells Reveals Critical Dependencies for Cell-Based Therapies.
    Wang D; Prager BC; Gimple RC; Aguilar B; Alizadeh D; Tang H; Lv D; Starr R; Brito A; Wu Q; Kim LJY; Qiu Z; Lin P; Lorenzini MH; Badie B; Forman SJ; Xie Q; Brown CE; Rich JN
    Cancer Discov; 2021 May; 11(5):1192-1211. PubMed ID: 33328215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9.
    Yumlu S; Stumm J; Bashir S; Dreyer AK; Lisowski P; Danner E; Kühn R
    Methods; 2017 May; 121-122():29-44. PubMed ID: 28522326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Editing the genome of hiPSC with CRISPR/Cas9: disease models.
    Bassett AR
    Mamm Genome; 2017 Aug; 28(7-8):348-364. PubMed ID: 28303292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel anti-glioblastoma agents and therapeutic combinations identified from a collection of FDA approved drugs.
    Jiang P; Mukthavaram R; Chao Y; Bharati IS; Fogal V; Pastorino S; Cong X; Nomura N; Gallagher M; Abbasi T; Vali S; Pingle SC; Makale M; Kesari S
    J Transl Med; 2014 Jan; 12():13. PubMed ID: 24433351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.