BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 27826026)

  • 1. Chitosan nanoparticles and their Tween 80 modified counterparts disrupt the developmental profile of zebrafish embryos.
    Yuan Z; Li Y; Hu Y; You J; Higashisaka K; Nagano K; Tsutsumi Y; Gao J
    Int J Pharm; 2016 Dec; 515(1-2):644-656. PubMed ID: 27826026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain Localization and Neurotoxicity Evaluation of Polysorbate 80-Modified Chitosan Nanoparticles in Rats.
    Yuan ZY; Hu YL; Gao JQ
    PLoS One; 2015; 10(8):e0134722. PubMed ID: 26248340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxic effects of aflatoxin B1 on embryonic development of zebrafish (Danio rerio): potential activity of piceatannol encapsulated chitosan/poly (lactic acid) nanoparticles.
    Dhanapal J; Ravindrran MB; Baskar SK
    Anticancer Agents Med Chem; 2015; 15(2):248-57. PubMed ID: 25322988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An assessment of the impact of SiO2 nanoparticles of different sizes on the rest/wake behavior and the developmental profile of zebrafish larvae.
    Xue JY; Li X; Sun MZ; Wang YP; Wu M; Zhang CY; Wang YN; Liu B; Zhang YS; Zhao X; Feng XZ
    Small; 2013 Sep; 9(18):3161-8. PubMed ID: 23468419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of Zebrafish Larvae as a Multi-Endpoint Platform to Characterize the Toxicity Profile of Silica Nanoparticles.
    Pham DH; De Roo B; Nguyen XB; Vervaele M; Kecskés A; Ny A; Copmans D; Vriens H; Locquet JP; Hoet P; de Witte PA
    Sci Rep; 2016 Nov; 6():37145. PubMed ID: 27872490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolomics reveals the role of acetyl-l-carnitine metabolism in γ-Fe
    Huang Z; Xu B; Huang X; Zhang Y; Yu M; Han X; Song L; Xia Y; Zhou Z; Wang X; Chen M; Lu C
    Nanotoxicology; 2019 Mar; 13(2):204-220. PubMed ID: 30663479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of copper oxide nanoparticles on developing zebrafish embryos and larvae.
    Sun Y; Zhang G; He Z; Wang Y; Cui J; Li Y
    Int J Nanomedicine; 2016; 11():905-18. PubMed ID: 27022258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage.
    Zhu X; Zhu L; Duan Z; Qi R; Li Y; Lang Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Feb; 43(3):278-84. PubMed ID: 18205059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model.
    Hu YL; Qi W; Han F; Shao JZ; Gao JQ
    Int J Nanomedicine; 2011; 6():3351-9. PubMed ID: 22267920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using citrate-functionalized TiO2 nanoparticles to study the effect of particle size on zebrafish embryo toxicity.
    Kim MS; Louis KM; Pedersen JA; Hamers RJ; Peterson RE; Heideman W
    Analyst; 2014 Mar; 139(5):964-72. PubMed ID: 24384696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental and reproductive toxicity of PVP/PEI-coated silver nanoparticles to zebrafish.
    Orbea A; González-Soto N; Lacave JM; Barrio I; Cajaraville MP
    Comp Biochem Physiol C Toxicol Pharmacol; 2017 Sep; 199():59-68. PubMed ID: 28274763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and toxicology evaluation of chitosan nanoparticles on the embryonic development of zebrafish, Danio rerio.
    Wang Y; Zhou J; Liu L; Huang C; Zhou D; Fu L
    Carbohydr Polym; 2016 May; 141():204-10. PubMed ID: 26877014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish.
    Lee KJ; Browning LM; Nallathamby PD; Osgood CJ; Xu XH
    Nanoscale; 2013 Dec; 5(23):11625-36. PubMed ID: 24056877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental Toxicity of Zinc Oxide Nanoparticles to Zebrafish (Danio rerio): A Transcriptomic Analysis.
    Choi JS; Kim RO; Yoon S; Kim WK
    PLoS One; 2016; 11(8):e0160763. PubMed ID: 27504894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioconcentration and metabolism of BDE-209 in the presence of titanium dioxide nanoparticles and impact on the thyroid endocrine system and neuronal development in zebrafish larvae.
    Wang Q; Chen Q; Zhou P; Li W; Wang J; Huang C; Wang X; Lin K; Zhou B
    Nanotoxicology; 2014 Aug; 8 Suppl 1():196-207. PubMed ID: 24433068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio).
    Zhu X; Wang J; Zhang X; Chang Y; Chen Y
    Nanotechnology; 2009 May; 20(19):195103. PubMed ID: 19420631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos.
    Asharani PV; Lianwu Y; Gong Z; Valiyaveettil S
    Nanotoxicology; 2011 Mar; 5(1):43-54. PubMed ID: 21417687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bio-fabrication and statistical optimization of polysorbate 80 coated chitosan nanoparticles of tapentadol hydrochloride for central antinociceptive effect: in vitro-in vivo studies.
    Patil GB; Surana SJ
    Artif Cells Nanomed Biotechnol; 2017 May; 45(3):505-514. PubMed ID: 27017892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitosan nanoparticles cause pre- and postimplantation embryo complications in mice.
    Park MR; Gurunathan S; Choi YJ; Kwon DN; Han JW; Cho SG; Park C; Seo HG; Kim JH
    Biol Reprod; 2013 Apr; 88(4):88. PubMed ID: 23467739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modified nanoparticles with cell-penetrating peptide and amphipathic chitosan derivative for enhanced oral colon absorption of insulin: preparation and evaluation.
    Guo F; Zhang M; Gao Y; Zhu S; Chen S; Liu W; Zhong H; Liu J
    Drug Deliv; 2016 Jul; 23(6):2003-14. PubMed ID: 26181840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.