These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 27826028)

  • 21. Filling of lactose-based formulations in a tamping-pin capsule filler.
    Faulhammer E; Kruisz J; Scheibelhofer O; Rehrl J; Witschnigg A; Khinast JG
    Drug Dev Ind Pharm; 2020 May; 46(5):775-787. PubMed ID: 32290729
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling powder encapsulation in dosator-based machines: I. Theory.
    Khawam A
    Int J Pharm; 2011 Dec; 421(2):203-9. PubMed ID: 22019484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a micro dosing system for fine powder using a vibrating capillary. Part 1: the investigation of factors influencing on the dosing performance.
    Chen X; Seyfang K; Steckel H
    Int J Pharm; 2012 Aug; 433(1-2):34-41. PubMed ID: 22595639
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting capsule fill weight from in-situ powder density measurements using terahertz reflection technology.
    Stranzinger S; Faulhammer E; Li J; Dong R; Zeitler JA; Biserni S; Calzolari V; Khinast JG; Markl D
    Int J Pharm X; 2019 Dec; 1():100004. PubMed ID: 31517269
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toward better understanding of powder avalanching and shear cell parameters of drug-excipient blends to design minimal weight variability into pharmaceutical capsules.
    Nalluri VR; Puchkov M; Kuentz M
    Int J Pharm; 2013 Feb; 442(1-2):49-56. PubMed ID: 22917747
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Powder die filling under gravity and suction fill mechanisms.
    Baserinia R; Sinka IC
    Int J Pharm; 2019 May; 563():135-155. PubMed ID: 30742983
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a micro-dosing system for fine powder using a vibrating capillary. Part 2. The implementation of a process analytical technology tool in a closed-loop dosing system.
    Chen X; Seyfang K; Steckel H
    Int J Pharm; 2012 Aug; 433(1-2):42-50. PubMed ID: 22564779
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An experimental study of die filling of pharmaceutical powders using a rotary die filling system.
    Zakhvatayeva A; Zhong W; Makroo HA; Hare C; Wu CY
    Int J Pharm; 2018 Dec; 553(1-2):84-96. PubMed ID: 30321642
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The design and use of an instrumented mG2 capsule filling machine simulator.
    Jolliffe IG; Newton JM; Cooper D
    J Pharm Pharmacol; 1982 Apr; 34(4):230-5. PubMed ID: 6124596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The development and evaluation of technology of hard capsules filling with powder mixtures].
    Draksiene G; Paulauskaite G; Savickas A
    Medicina (Kaunas); 2006; 42(7):592-9. PubMed ID: 16861843
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation and prediction of powder flowability in pharmaceutical tableting.
    Hildebrandt C; Gopireddy SR; Fritsch AK; Profitlich T; Scherließ R; Urbanetz NA
    Pharm Dev Technol; 2019 Jan; 24(1):35-47. PubMed ID: 29227171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accuracy of micro powder dosing via a vibratory sieve-chute system.
    Besenhard MO; Faulhammer E; Fathollahi S; Reif G; Calzolari V; Biserni S; Ferrari A; Lawrence SM; Llusa M; Khinast JG
    Eur J Pharm Biopharm; 2015 Aug; 94():264-72. PubMed ID: 26044188
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resistance to densification, tensile strength and capsule-filling performance of some pharmaceutical diluents.
    Nikolakakis I; Aragon OB; Malamataris S
    J Pharm Pharmacol; 1998 Jul; 50(7):713-21. PubMed ID: 9720619
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Practical implications of theoretical consideration of capsule filling by the dosator nozzle system.
    Jolliffe IG; Newton JM
    J Pharm Pharmacol; 1982 May; 34(5):293-8. PubMed ID: 6123566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An investigation into the effects of excipient particle size, blending techniques and processing parameters on the homogeneity and content uniformity of a blend containing low-dose model drug.
    Alyami H; Dahmash E; Bowen J; Mohammed AR
    PLoS One; 2017; 12(6):e0178772. PubMed ID: 28609454
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of different feed frame components on the powder behavior and the residence time distribution with regard to the continuous manufacturing of tablets.
    Dülle M; Özcoban H; Leopold CS
    Int J Pharm; 2019 Jan; 555():220-227. PubMed ID: 30419296
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid automated process development of a continuous capsule-filling process.
    Wagner B; Brinz T; Otterbach S; Khinast J
    Int J Pharm; 2018 Jul; 546(1-2):154-165. PubMed ID: 29738798
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reduction of tablet weight variability by optimizing paddle speed in the forced feeder of a high-speed rotary tablet press.
    Peeters E; De Beer T; Vervaet C; Remon JP
    Drug Dev Ind Pharm; 2015 Apr; 41(4):530-9. PubMed ID: 24502268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An investigation of the relationship between particle size and compression during capsule filling with an instrumented mG2 simulator.
    Jolliffe IG; Newton JM
    J Pharm Pharmacol; 1982 Jul; 34(7):415-9. PubMed ID: 6126535
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of particle size and density on the die fill of powders.
    Mills LA; Sinka IC
    Eur J Pharm Biopharm; 2013 Aug; 84(3):642-52. PubMed ID: 23403013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.